4VAC5-15-10. Definitions.

The words and terms used in this chapter shall have the following meanings unless the context clearly indicates otherwise.

"Application rate" or "nutrient rate" means the quantity of major nutrients, nitrogen as N, phosphorus as P_2O_5 , and potassium as K_2O on a per acre basis to supply crop or plant nutrient needs, and to achieve realistic expected crop yields.

"Banding" or "sideband" means the placement of fertilizer approximately two inches to the side and two inches below the seed.

"Best management practice" means a conservation or pollution control practice that manages soil, nutrient losses, or other potential pollutant sources to minimize pollution of water resources, such as split applications of nitrogen, or use of cereal grain cover crops to trap available nitrogen and reduce soil erosion.

"Biosolids" means a sewage sludge that has received an established treatment for required pathogen control and is treated or managed to reduce vector attraction to a satisfactory level and contains acceptable levels of pollutants, such that it is acceptable for use for land application,

DEPARTMENT OF CONSERVATION AND RECREATION Page 2 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

marketing, or distribution in accordance with 12VAC5-585-10 et seq., Biosolids Use Regulations of the Board of Health.

"Broadcast" means the uniform application of a material over a field.

"Calibration" means the systematic determination of the operational parameters, such as speed and quantity delivered, of application equipment.

"Cereal crop" or "small grain" means barley, rye, triticale, or wheat.

"Certified nutrient management planner" or "nutrient management planner" or "planner" means the person or persons who prepare nutrient management plans under these regulations a person who holds a current Virginia nutrient management certificate of competence.

"Cool season grass" means grass species of temperate zone origin which exhibit the greatest rates of dry matter production in the day/night temperature range of 60°/ 50°F to 80°/ 70°F and includes fescues, bluegrasses, and ryegrasses. Examples of cool season grasses include fescue, bluegrass, and ryegrass.

"Commonwealth" means the Commonwealth of Virginia.

DEPARTMENT OF CONSERVATION AND RECREATION Page 3 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

"Composted organic nutrient source" means the relatively stable, humus-like product resulting from the controlled aerobic, thermophilic biological decomposition of organic material that bears little physical resemblance to the raw materials from which it originated and having a final carbon to nitrogen ration of 25:1 or greater.

"Cover crop" means a crop including, but not limited to, cereal grains, which is planted following the harvest of the preceding crop for the purpose of:

1. Seasonal protection of soil, or

2. Assimilation of residual <u>soil</u> nitrogen left from a previous crop or from continued mineralization of nitrogen.

"Crop" means cultivated plants or agricultural produce such as grain, silage, forages, oilseeds, vegetables, fruit, nursery stock, or turfgrass.

"Cropland" means land used for the production of grain, oilseeds, silage, industrial crops, and any other category of crop not defined as specialty crop, hay, or pasture.

"Crop nutrient needs" means the primary nutrient requirements of a crop determined as pounds of nitrogen as N, phosphorus as P_2O_5 , and potassium as K_2O required for production of an expected crop yield based upon soil analysis results <u>as specified in Virginia Nutrient</u>

DEPARTMENT OF CONSERVATION AND RECREATION Page 4 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

Management Standards and Criteria, revised 2005 or Virginia Commercial Vegetable Production Recommendations for 2004.

"Crop nutrient removal" means the amount of nutrients per acre expected to be taken up by a plant and removed from the site in the harvested portion at the expected yield level, generally expressed as tons per acre or bushels per acre, at rates specified in Virginia Nutrient Management Standards and Criteria, revised 2005.

"Crop rotation" means a method of maintaining and renewing the fertility of a soil by the successive planting of different crops on the same land.

"Department" means the Department of Conservation and Recreation.

"Double crop" means the production and harvesting of two crops in succession within a consecutive 12-month growing season.

"Dry manure" or "semisolid manure" means manure containing less than 85.5% moisture.

"Environmentally sensitive site" means any field which is particularly susceptible to nutrient loss to groundwater or surface water since it contains, or drains to areas which contain, sinkholes; or

DEPARTMENT OF CONSERVATION AND RECREATION Page 5 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

where at least 33% of the area in a specific field contains one or any combination of the following features:

1. Soils with a leaching index above 10 high potential for leaching based on soil texture or excessive drainage;

2. Sinkholes;

3. 2. Shallow soils less than 41 inches deep likely to be located over fractured or limestone bedrock;

4. 3. Subsurface tile drains;

4. Soil with high potential for subsurface lateral flow based on soil texture and poor drainage;

5. Floodplains as identified by soils prone to frequent flooding in county soil surveys; or

6. Lands with slopes greater than 15%.

"Expected crop yield" means a realistic crop yield for a given farm field determined by using yield records or soil productivity information.

"Fertilizer" means any organic or inorganic material of natural or synthetic origin that is added to a soil to supply certain nutrients essential to plant growth.

"Field" means a unit of contiguous nonwooded land generally used for crop production that is separated by permanent boundaries, such as fences, permanent waterways, woodlands, croplines

DEPARTMENT OF CONSERVATION AND RECREATION Page 6 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

not subject to change because of farming practices, and other similar features or as determined by the United States Department of Agriculture Farm Service Agency.

"Field identification number" means a number used by a farmer (or the United States Department of Agriculture Farm Service Agency) to distinguish or identify the location of a field on a farm.

"Groundwater" means any water beneath the land surface in a water saturated layer of soil or rock.

"Grid soil sampling" means a process whereby farm fields or other areas are subdivided into smaller areas or squares for the purpose of obtaining more detailed soil analysis results.

"Hay" means a grass, legume, or other plants, such as clover or alfalfa, which is cut and dried for feed, bedding, or mulch.

"Hydrologic soil group" means a classification of soils into one of four groups, A, B, C, or D, according to their hydrologic properties, ranging from low runoff potential (high infiltration potential) in group A to high runoff potential (low infiltration potential) in group D.

"Incorporation" means the process whereby materials are mixed into soils and not exposed on the soil surface, such as would be achieved by disking one time to a depth of six inches.

DEPARTMENT OF CONSERVATION AND RECREATION Page 7 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

"Industrial waste" means liquid or other waste resulting from any process of industry, manufacture, trade or business, or from the development of any natural resources.

"Irrigation" means the application of water to land to assist in crop growth.

"Irrigation scheduling" means the time and amount of irrigation water to be applied to an area for optimum crop growth and to minimize leaching and runoff.

"Leaching" means the movement of soluble material, such as nitrate, in solution through the soil profile by means of percolation.

"Legume" means a plant capable of fixing nitrogen from the atmosphere such as peas, beans, peanuts, clovers, and alfalfas.

"Legume nitrogen credit" means the amount of nitrogen a legume is expected to supply to a succeeding crop.

"Liming" means the application of materials containing the carbonates, oxides, or hydroxides of calcium or magnesium in a condition and in a quantity suitable for neutralizing soil acidity.

7

DEPARTMENT OF CONSERVATION AND RECREATION Page 8 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

"Liquid manure" means manure containing at least 85.5% moisture or which can be applied through subsurface injection or surface application with liquid application equipment.

"Livestock" means domesticated animals such as cattle, chickens, turkeys, hogs, and horses raised for home use or for profit.

"Manure" or "animal waste" means animal fecal and urinary excretions and waste by products which may include spilled feed, bedding litter, soil, lactase, process wastewater, and runoff water from animal confinement areas.

"Mehlich I" means a specific soil analysis procedure developed by North Carolina State University to determine <u>extractable</u> levels of certain nutrients in soils.

"Micronutrient" means a nutrient necessary only in extremely small amounts for plant growth.

"Mineralization" means the process when plant unavailable organic forms of nutrients are converted to a plant available inorganic state as a result of soil microbial decomposition.

"No-till" means the soil is left undisturbed from the time of harvest or the chemical killing of the preceding crop or cover crop until and including the time of planting of the current crop except

DEPARTMENT OF CONSERVATION AND RECREATION Page 9 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

for strips up to 1/3 of the row width that are disturbed by coulters or disk openers during the planting operation.

"NRCS" means the United States Department of Agriculture, Natural Resource Conservation Service, formerly the Soil Conservation Service (SCS).

"Nutrient" means an element or compound essential as raw materials for plant growth and development such as carbon, nitrogen, and phosphorus.

"Nutrient content" means the percentage of any primary nutrients such as nitrogen as N, phosphorus as P₂O₅, and potassium as K₂O contained in any type or source of plant nutrients.

"Nutrient management plan" or "plan" means a plan <u>prepared by a Virginia certified nutrient</u> <u>management planner</u> to manage the amount, placement, timing, and application of manure, fertilizer, biosolids, or other materials containing plant nutrients in order to reduce pollution <u>nutrient loss to the environment</u> and to produce crops.

"Nutrient Management Training and Certification Fund" means the fund established by § 10.1-104.2 of the Code of Virginia to support the department's Nutrient Management Training and Certification Program.

DEPARTMENT OF CONSERVATION AND RECREATION Page 10 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

"Organic nutrient source" or "organic source" means manure, biosolids, sludge, <u>industrial waste</u>, green manure, compost, or other plant or animal residues which contain plant nutrients.

"Organic residuals" means nutrients released over time from manure, biosolids, industrial wastes, legumes, or other organic sources of nutrients.

"Pasture" means land which supports the grazing of animals for forages.

"Person" means an individual, corporation, partnership, association, a governmental body and its subordinate units, a municipal corporation or any other legal entity.

"Phosphorus index" means the Virginia Phosphorus Index Version 1.3 Technical Guide, Revised March 2005.

"Plant available nutrients" means the portion of nutrients contained in nutrient sources which is expected to be available for potential use by plants during the growing season or the crop rotation.

"Pre-sidedress nitrogen test (PSNT)" or "PSNT" means a procedure used to help determine soil nitrogen level nitrate-nitrogen levels during a crop growing season.

DEPARTMENT OF CONSERVATION AND RECREATION Page 11 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

"Primary nutrients" means nitrogen as N, phosphorus as P₂O₅, and potassium as K₂O.

"Residual nutrients" means the level of nitrogen, phosphorus, and potassium remaining or available in the soil from previously applied nutrient sources, or unharvested plants or plant parts, or baseline nutrient levels in the soil.

"Runoff" means that part of precipitation, snow melt, or irrigation water that runs off the land into streams or other surface water which can carry pollutants from the land.

"RUSLE2" means the USDA – NRCS Revised Universal Soil Loss Equation Version 2 software package.

"Secondary nutrient" means calcium, magnesium, or sulfur.

"Sewage sludge" or "sludge" means any solid, semisolid, or liquid residues which contain materials removed from municipal or domestic wastewater during treatment including primary and secondary residues. Other residuals or solid wastes consisting of materials collected and removed by sewage treatment, septage, and portable toilet wastes are also included in this definition. Liquid sludge contains less than 15% dry residue by weight or can be applied through subsurface injection or surface application with liquid application equipment. Dewatered sludge contains 15% or more dry residue by weight.

DEPARTMENT OF CONSERVATION AND RECREATION Page 12 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

"Shall" means a mandatory requirement.

"Should" means a recommendation.

"Slope" means the degree of deviation of a surface from horizontal, measured as a percentage, as a numerical ratio, or in degrees.

"Sidedress" means the placement of fertilizer beside or between the rows of a crop after crop emergence.

"Sinkhole" means a depression in the earth's surface caused by dissolving of underlying limestone, salt, or gypsum having drainage patterns through underground channels.

"Slowly available nitrogen" means nitrogen sources that have restricted availability involving compounds which dissolve slowly, materials that must be microbially decomposed, or soluble compounds coated with substances highly impermeable to water such as urea formaldehyde based water insoluble nitrogen, sulfur coated urea, <u>and</u> natural organics.

"Soil erosion" or "erosion" <u>or "soil loss"</u> means the wearing away of the land surface by water, wind, or waves.

DEPARTMENT OF CONSERVATION AND RECREATION Page 13 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

"Soil management group" means a grouping of soils based on their similarity in profile characteristics which affect crop production and require specific soil and crop management practices.

"Soil nitrate leaching index" means the potential for a given soil to be subject to nitrate leaching below the root zone.

"Soil pH level" means the negative logarithm of the hydrogen-ion activity of a soil which measures the relative acidity or alkalinity of the soil. The pH level affects the availability and plant utilization of nutrients.

"Soil productivity group" means a grouping of soils based upon expected yield levels for a given crop type.

"Soil series" means a classification of a specific soil type by name based on the chemical and physical properties of the soil.

"Soil survey" means a published or unpublished document developed by a governmental entity which includes detailed descriptions and classifications of soils, mapping of various soil series, and the interpretation of soils according to their adaptability for various crops and trees.

DEPARTMENT OF CONSERVATION AND RECREATION Page 14 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

"Specialty crop" means vegetables, tree crops, perennial vine crops, ornamentals, horticultural crops, and other similar crops.

"Split application" means utilizing a sequence of two or more nutrient applications, separated by approximately three weeks or more, to a single crop in order to improve nutrient uptake efficiency.

"Surface water" means all water whose surface is exposed to the atmosphere.

"Tilled" means soil is disturbed between the time of harvest of the preceding crop through the time of planting of the current crop in that greater than 1/3 of the row width is disturbed by tillage implements such as moldboard plows, chisel plows, subsoilers, disks, field cultivators, roto-tillers, coulters or disk openers.

"Tillering" is the formation of lateral shoots from the auxillary buds of small grains and grasses.

"Tissue test" means an analysis of crop tissue for the percentage of nitrogen at key growth stages, and used as an intensive nutrient management technique with small grain crops.

DEPARTMENT OF CONSERVATION AND RECREATION Page 15 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

"Topdress" means broadcast applications of fertilizer on crops such as small grains or forage after crop emergence has occurred.

"Trap crop" means a timely planted cereal crop for the purposes of capturing residual soil nitrogen and nitrogen that is released during the decomposition of manure or biosolids in order to manage limited manure or sewage sludge storage availability.

"Turfgrass" means selected grass species planted or sodded and managed for such uses as home lawns, golf courses, office parks and rights-of-way.

"Volatilization" means a process by which nitrogen is lost to the atmosphere as ammonia gas.

"Warm season grass" means a grass species of tropical origin that exhibits the highest rate of dry matter production in the day/night temperature range of 90°/79°F at a minimum to a maximum of 97°/88°F. Warm Examples of warm season grasses include zoysia and bermuda grasses.

"Water insoluble nitrogen" or "WIN" means a urea formaldehyde based slowly available nitrogen listed on fertilizer bags and reported as a percentage.

"Watershed" means a drainage area or basin in which all land and water areas drain or flow toward a central collector such as a stream, river, or lake at a lower elevation.

DEPARTMENT OF CONSERVATION AND RECREATION Page 16 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

"Watershed code" means the letter and number used by the department to identify a watershed or hydrologic unit area.

"Zadoks' growth stage" means the numerical scale ranging from 0-93 which assigns values to small grain growth stages, e.g. Growth Stage 30 is just prior to the stem elongation phase in wheat growth.

4VAC5-15-40. Eligibility requirements.

A. Certification may be obtained by satisfying all of the following requirements for certification:

1. Satisfactorily completing and submitting to the department an application in the form required by the department, including a statement of any felony convictions. Such application shall be submitted to the department at least 30 days before the approved examination date set by the department. The application shall request information relating to the person's education, work experience, knowledge of nutrient management, and willingness to abide by the requirements of these regulations;

2. Supplying proof of meeting one of the following:

DEPARTMENT OF CONSERVATION AND RECREATION Page 17 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

a. A copy of a college transcript indicating completion of a college degree with a major in an agriculturally related area with coursework in the area of nutrient management such as soils, soil fertility, and plant science, and one year of practical experience related to nutrient management planning or implementation of nutrient management concepts and principles acceptable to the department, or

b. A combination of education to include nutrient management related educational courses or training and a minimum of three years of practical experience related to nutrient management planning <u>or implementation of nutrient management concepts and principles</u> acceptable to the department;

3. Obtaining a passing score on each of the essential components <u>parts</u> of the nutrient management certification examination administered by the department; and

4. Submitting a \$100 certification fee by check or money order to the department.

B. Certificates shall be valid for two years and will expire on the last day of the expiration month. Certified nutrient management planners or applicants shall notify the department of any change in mailing address within 30 days of such change in address.

C. Individuals certified as nutrient management consultants by the State of Maryland or certified as nutrient management specialists by the Commonwealth of Pennsylvania will be eligible for

DEPARTMENT OF CONSERVATION AND RECREATION Page 18 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

certification in Virginia by complying with all requirements of these regulations except for subdivision A 2 of this section. These individuals may also substitute, for the requirements in 4VAC5-15-60 C, the attainment of a passing score on a Virginia specific examination component which shall include at a minimum the elements listed in 4VAC5-15-60 C 9 and C 10. The department, upon review, may accept or approve nutrient management certification programs of other states as satisfying partial requirements for certification.

4VAC5-15-60. Examination.

A. The department shall administer nutrient management certification examinations at least once per year. The examinations shall require a demonstration of the ability to prepare a nutrient management plan. The department may limit the number of applicants taking the examination based upon available examination space.

B. Applicants for certification shall achieve a passing score on each of the essential components parts of the nutrient management certification examination to become eligible for certification.

C. The examinations for persons involved in agricultural nutrient management shall address the elements listed below. To address nutrient management on urban land uses, specialty specific examinations may be added to or substituted by the department for the elements below.

DEPARTMENT OF CONSERVATION AND RECREATION Page 19 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

1. General understanding of overall nutrient management concepts such as nutrient cycling on farms, the purpose of nutrient management planning, economic aspects of nutrient use, and components of a nutrient management plan;

2. Basic soil science concepts such as soil physical and chemical properties including texture, structure, organic matter, and horizon development, and how such characteristics influence crop productivity and adaptation, water runoff, and infiltration;

3. Environmental management concepts such as the water cycle, nutrient loss mechanisms, environmental effects of nutrients in waters including Chesapeake Bay, identification of high risk sites relating to nutrient use and appropriate nutrient management practices to reduce nutrient losses;

4. Nutrient sampling, testing, and analysis such as basic sampling procedures, relationship of soil test level with <u>the</u> likelihood of crop response, soil nitrate testing, manure and biosolids sampling and interpretation, and determining nitrogen supplied by legumes;

5. Basic soil fertility concepts such as relationship of soil pH to nutrient availability and toxicity, essential elements for crop growth, limiting factors to crop production, cation exchange capacity and related concepts, nutrient cycles, and forms of nutrients in soils;

DEPARTMENT OF CONSERVATION AND RECREATION Page 20 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

6. Fertilizer management concepts such as types of fertilizers, nutrient analysis of common materials and grades, basic calculations and blending, calibration of equipment, and application methods;

7. Manure management concepts such as nutrient content and volume produced, determination of plant available nutrients, selecting sites for manure application, proper timing and placement, coordination of fertilizers with manure, application methods and calibration;

8. Biosolids management concepts such as determination of plant available nutrients, nutrient content, forms of nutrients, types of sludges, coordination with fertilizer applications, and application methods;

9. Nutrient management training and certification regulatory requirements, and requirements of other nutrient management related laws, regulations, and incentive programs; and

10. Development of multiple components of nutrient management plans and completion of calculations comparable to development of nutrient management plans such as, but not limited to, determination of specific soil types in fields, determination of specific nutrient requirements based on soil productivity and soil analysis results, evaluation of field limitations based on environmental hazards or concerns, <u>timing of nitrogen applications, phosphorus nutrient</u>

DEPARTMENT OF CONSERVATION AND RECREATIONPage 21 of 48NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

management planning methods and assessment techniques, and interpretation of manure analysis results.

D. An individual who is unable to take an examination at the scheduled time shall notify the department at least five days prior to the date and time of the examination; such individual will be rescheduled for the next examination. The department may consider accepting notice of less than five days due to individual hardship situations on a case-by-case basis. Failure to notify the department may require the individual to submit a new application and payment of fees in accordance with 4VAC5-15-40.

E. The department shall establish acceptable passing scores for the examinations based on the department's determination of the level of examination performance required to show minimal acceptable competence.

F. All applicants shall be notified of results in writing within 60 days of the completion of the examinations.

4VAC5-15-80. Certificate renewal.

The department will not renew a certificate if a proceeding to deny certification under 4VAC5-15-110 has begun, or if the department has found that the applicant violated any requirements of

DEPARTMENT OF CONSERVATION AND RECREATION Page 22 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

this chapter. A certificate is issued for two years and may be renewed on or before the expiration of a certificate by complying with all of the following requirements:

1. Submittal of a renewal application on the form the department requires;

2. Payment of a \$100 renewal fee to the department;

3. Submittal of proof of satisfactory completion of at least four hours of continuing education pre-approved by the department within the past two years. Requests for pre-approval of continuing education courses must be received at least 60 days prior to the expected course date or dates and must include a detailed syllabus indicating time to be spent on each topic area covered. Continuing education hours must be in subject matter consistent with 4VAC5-15-60 C. Department personnel may attend continuing education sessions to verify that the requirements are met. Proof of attendance must be verified by the course provider. The department may accept continuing education units obtained in <u>Delaware</u>, Maryland and Pennsylvania if such continuing education units are specifically for the purpose of recertification in the state nutrient management certification program; and

4. Completion of at least one nutrient management plan or completion of four hours of continuing education pre-approved by the department within the past two years in addition to the requirements of subdivision 3 of this section.

DEPARTMENT OF CONSERVATION AND RECREATIONPage 23 of 48NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

5. Persons certified prior to the effective date of this regulation shall attend a department approved training course in phosphorus nutrient management planning methods and assessment techniques prior to certificate renewal. The training course hours may be applied toward other continuing education requirements of this subsection.

4VAC5-15-100. Recordkeeping and reporting requirements.

A. Certified nutrient management planner reporting requirements. A person who holds a certificate under these regulations shall keep records and file with the department by September 30 of each year an annual activity report on a form supplied by the department covering the previous year (July 1 through June 30). The annual activity report shall contain the following information:

1. Name and certificate number of the certified nutrient management planner;

2. Any change of mailing address during the previous year;

3. Number of nutrient management plans completed;

DEPARTMENT OF CONSERVATION AND RECREATION Page 24 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

4. Acreage covered by plans and planned acreage by county and state watershed codes <u>specified</u> by plan categories of new or revised;

5. Breakdown of planned acreage by cropland, hay, pasture, and specialty crops by county and watershed code <u>specified by plan categories of new or revised</u>; and

6. Other information indicating number of practices facilitated by the planner such as manure testing and use of the PSNT.

B. Certified nutrient management planner recordkeeping requirements. The department may periodically inspect nutrient management plans prepared by certified persons and required records for the purpose of review for compliance with 4VAC5-15-140 and 4VAC5-15-150. A certified nutrient management planner shall maintain the following plan records for a period of not less than three years from the date the plan was prepared:

1. A complete copy of each nutrient management plan prepared and shall make such plans available for inspection by department personnel upon request within two weeks <u>one week</u> of receiving such request;

2. Records for each plan with all of the following information if the information is not already contained in the plan:

DEPARTMENT OF CONSERVATION AND RECREATIONPage 25 of 48NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

a. Representative soil analysis results for fields, or field grids if grid soil sampling is used, dated not more than three years prior to the date the nutrient management plan was completed to include information on soil fertility levels for phosphorus and potassium, and pH level;b. Copies of soil survey maps or a soil survey book containing maps for each field unless a soil survey has not been published for the county;

c. Yield records for each field to include calculations used to determine the planning yield if upward adjustments to soil productivity based yields were made to more than 20% of the fields covered by the plan;

d. Type and number of livestock, if any, as well as a description of the livestock to include average weight;

e. Calculations or records indicating annual quantity of manure produced or expected to be produced; and

f. Organic nutrient source analysis, if applicable, to include information on percentage of moisture, total nitrogen or total Kjeldahl nitrogen, <u>ammonium nitrogen</u>, total phosphorus, and total potassium.

3. A summary listing of all plans prepared to include landowner or operator's name and the date the plan was prepared or revised.

4VAC5-15-110. Compliance with regulations and disciplinary action.

25

DEPARTMENT OF CONSERVATION AND RECREATION Page 26 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

If the department finds that a certified person or an applicant for certification violated any requirements of this chapter, including the circumstances listed below, the department may deny, suspend or revoke certification, following the informal fact-finding procedures of the Virginia Administrative Process Act (§9-6.14:1 et seq. of the Code of Virginia).

1. Providing misleading, false, or fraudulent information in applying for a certificate;

2. Providing the department with any misleading, false, or fraudulent report;

3. Offering or preparing a nutrient management plan claimed to be prepared by a person certified as a nutrient management planner in Virginia as provided by these regulations without a certificate;

4. Offering or , preparing, modifying, or revising a nutrient management plan that does not comply with the requirements of these regulations;

5. Failing to promptly provide any report or to allow the department access to inspect any records required to be kept by these regulations;

DEPARTMENT OF CONSERVATION AND RECREATION Page 27 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

<u>6. Failing to provide the department with a copy of a nutrient management plan within two</u>
<u>weeks following the modification of any plan required by regulations promulgated under §32.1-</u>
164.5 for sewage sludge, §62.1-44.17:1 for animal waste, §62.1-44.17:1.1 for poultry waste; or

6. 7. Conviction of a felony related in any way to the responsibilities of a certified nutrient management planner.

4VAC5-15-130. Duties of other state agencies.

The provisions of this chapter shall not limit the powers and duties of other state agencies.

4VAC5-15-140. Nutrient management plan content.

A. A certified nutrient management planner shall prepare nutrient management plans which contain the information in subsections B through G of this section. For nutrient management plans covering nonagricultural, specialty land uses, for example residential lawns, office parks, and golf courses, the department may specify additional plan elements which are critical to the management of nutrients for a particular activity, and may eliminate requirements not pertinent to nonagricultural land uses.

B. Plan identification. Each plan shall be identified by a single cover sheet indicating:

DEPARTMENT OF CONSERVATION AND RECREATION Page 28 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

1. Farmer/operator name and address;

2. Name, and certificate number, and signature of the certified nutrient management planner that prepared the plan;

3. County and watershed code of land under the nutrient management plan;

4. Total acreage under the plan with double cropped acreage accounted for only once;

5. Acreage of cropland, hay, pasture, and specialty crops included in the plan for the first year of the plan;

6. Date the plan was prepared or revised; and

7. Type and approximate number of livestock, if applicable.

C. Map or aerial photograph.

1. Each plan shall contain a map or aerial photograph to identify:

a. The farm location and boundaries;

DEPARTMENT OF CONSERVATION AND RECREATION Page 29 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

b. Individual field boundaries where nutrients will be applied; and

c. Field numbers and acreages where nutrients will be applied;

d. Environmentally sensitive sites as defined in 4VAC-5-15-10;

e. Setback areas for non-application for manure and biosolids as specified in 4VAC5-15-150. A.
5. e;

f. Location of manure, biosolids, or waste storage if any; and

g. Intermittent or perennial streams and buffers (if the phosphorus index is used to determine phosphorus application rates).

2. The map or aerial photograph shall be legible, with the features in subdivision 1 of this subsection recognizable. A farm sketch or soil survey map may be used when a map or aerial photograph is not available, if the features described in subdivision 1 of this subsection are recognizable.

D. Summary of nutrient management plan recommendations. Each plan shall contain one or more summary sheets that list the following information for each field:

1. Name of the farmer/operator;

2. Field identification numbers to include the United States Department of Agriculture Farm Service Agency tract and field numbers; 3. Field acreages;

4. Expected crops or crop rotations;

5. Crop nutrient needs per acre based on soil analysis results and soil productivity;

6. Legume nitrogen credits per acre;

7. Available nutrients in soil from previous crop and mineralization of organic residuals;

8. Recommended organic nutrient source application rates in tons per acre or 1,000 gallons per acre; plant available nitrogen as N, phosphorus as P_2O_5 , and potassium as K_2O per acre; and spreading schedule to include approximate months of application;

9. Expected days for incorporation of organic nutrient sources into the soil if organic nutrient sources will be used;

10. Commercial fertilizer rates and timing of applications, including split applications of nitrogen and the possible use of soil nitrogen test results on a field before sidedressing with nitrogen; and

DEPARTMENT OF CONSERVATION AND RECREATION Page 31 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

<u>11. Numerical phosphorus and potassium soil analysis results expressed as ppm P and K</u>, pounds per acre P and K or pounds per acre $P_2 O_5$ and $K_2 O$ for all fields in the plan.

E. Individual fields may be grouped together if similar soil productivity levels, soil fertility levels, and environmentally sensitive site features exist pertaining to subsection D of this section.

F. Each plan shall also contain the following information in summary or narrative form:

1. Identification and management of environmentally sensitive sites;

2. Quantities of manure produced on the farm, available manure storage capacity, and manure analysis;

3. Total manure used as crop nutrients, if any, including manure from both on farm and off farm sources based on plan recommendations and total land requirements for manure utilization;

4. Quantity of unused manure, if applicable, and recommendations on appropriate use options;

5. Liming recommendations if soil pH is below the optimal range;

DEPARTMENT OF CONSERVATION AND RECREATION Page 32 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

6. Recommendations or fact sheets to ensure efficient application of fertilizers and organic nutrient sources and other best management practices to reduce the potential for the degradation of surface and groundwater quality, which may include but are not limited to:

a. Equipment calibration;

b. Application timing and method;

c. Crop rotation and agronomic practices;

d. Soil nitrate testing; and

e. Cover crop management;

7. Information on maintaining and updating a nutrient management plan. General comments about plan maintenance shall include:

a. The length of time the plan is effective, not to exceed five years from the date the plan is developed consistent with 4VAC5-15-150 D. 1.; and

b. Identification of circumstances or changes in the farm operation such as an increase in animal numbers that would require the plan to be updated prior to the time specified in this subdivision.

8. Expected crop yields for each field for the planned crop rotation;

9. The following information for all fields where the phosphorus applications are based on the phosphorus index:

a. Functioning riparian buffer widths and distances to surface waters in feet;

DEPARTMENT OF CONSERVATION AND RECREATION Page 33 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

b. Presence of any contour planting at a maximum of 1% row grade, strip cropping, conservation tillage with greater than 30% residue, or terraces;

c. Percentage of required ground cover on pastures stated as <50% cover, 50-75% cover, or >75% cover; and

d. Crop tillage type for each crop stated as either no-till or tilled for all cropland; and

e. If expected soil erosion for the phosphorus index was developed using RUSLE2, a copy of the RUSLE2 Profile Erosion Calculation Record computerized print-out indicating: (i) crop(s) for each year in the crop rotation specified by calendar year to match those identified in the nutrient management plan, (ii) all mechanical field operations, and (iii) edge of field soil loss for each field.

9. <u>10.</u> Other notes as needed pertaining to nutrient application, tillage, and other special conditions.

G. The nutrient management planner should shall incorporate additional plan requirements as appropriate if required by other specific legislative, regulatory or incentive programs which apply to a specific operator.

4VAC5-15-150. Required nutrient management plan procedures.

A. Nutrient application.

1. A certified nutrient management planner shall include, in each plan, nutrient application practices for each field in the plan. The nutrient application rates shall be calculated for nitrogen (N), phosphate (P₂O₅), and potash (K₂O). Individual field recommendations shall be made after considering nutrients contained in fertilizers, manure, biosolids, <u>industrial wastes</u>, legumes in the crop rotation, crop residues, residual nutrients, and all other sources of nutrients. Individual fields may be grouped together if similar soil productivity levels, soil fertility levels, and environmentally sensitive site features exist.

2. Nutrient application rates.

a. Determination of crop nutrient needs shall be consistent with tables and procedures contained in Virginia Nutrient Management Standards and Criteria, Revised November 1995, 2005 and the Commercial Vegetable Production Recommendations, 1995 2004 (Virginia Cooperative Extension Publication 456-420), and shall be based on soil test results for P_2O_5 and K_2O .

b. Nitrogen applications rates in nutrient management plans shall not exceed crop nutrient needs in subdivision 2 a of this subsection and phosphorus application rates should be managed to reduce adverse water quality impacts. Whenever possible, phosphorus applications from organic nutrient sources should not exceed crop needs based on a soil test over the duration of the crop rotation. If this is not possible, preference should be given to routing phosphorus in organic

DEPARTMENT OF CONSERVATION AND RECREATION Page 35 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

nutrient sources to fields having the lowest phosphorus soil analysis, fields to be rotated into crops such as alfalfa hay, or fields with predominately A and B slopes as identified in a soil survey.

e. The development and implementation of a comprehensive soil conservation plan or practices that meet the criteria for a conservation system contained in the United States Department of Agriculture NRCS Field Office Technical Guide shall be recommended by a nutrient management planner on sites designated as highly erodible land (HEL) by the NRCS where a soil analysis indicates a very high phosphorus level (55 parts per million or above using Mehlich I extraction procedures or other methods correlated to Mehlich I) and phosphorus applications from organic sources will exceed crop uptake. If such sites are established pastures, the certified nutrient management planner shall recommend that pasture grasses or legumes be maintained at no less than a three-inch height in order to reduce runoff potential.

c. Phosphorus application rates shall be managed to minimize adverse water quality impacts consistent with procedures (1) through (4) of this subsection.

(1) Phosphorus applications from inorganic nutrient sources shall not exceed crop nutrient needs over the crop rotation based on a soil test.

DEPARTMENT OF CONSERVATION AND RECREATION Page 36 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

(2) Phosphorus applications shall not be included in nutrient management plans for soils exceeding specified phosphorus saturation levels as listed in Virginia Nutrient Management Standards and Criteria, Revised 2005 regardless of the outcome of other procedures specified in this subsection. The specified phosphorus saturation levels pertain to the following plan development dates: (i) 65% for plans developed after 12/31/2005 through 12/31/2010; and (ii) 50% for plans developed after 12/31/2010.

(3) Whenever possible, phosphorus applications from organic nutrient sources should not exceed crop needs based on a soil test over the duration of the crop rotation. If this is not possible, maximum phosphorus application rates and phosphorus control practices contained in nutrient management plans shall be consistent with the phosphorus management provisions contained in Virginia Nutrient Management Standards and Criteria, Revised 2005.

(4) A single phosphorus application may be recommended to address multiple crops in the crop rotation identified within the timeframe covered by the nutrient management plan consistent with 4VAC5-15-150 D. 1 if the single application does not exceed the sum of the appropriate application rates for individual crops as determined by subdivisions (1) through (3) of this subsection.

d. Recommended application rates for potassium, secondary nutrients, and micronutrients should <u>shall</u> be at agronomically or economically justifiable levels for expected crop production.

DEPARTMENT OF CONSERVATION AND RECREATION Page 37 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

Potassium applications sufficient to meet crop nutrient needs shall be included in nutrient management plans for all fields consistent with recommendations contained in Virginia Nutrient Management Standards and Criteria, Revised 2005.

e. Expected crop yield shall be determined from past crop yields or soil productivity on a given field. The farmer's past experience with crop yields in specific fields may be used to make reasonable adjustments to expected crop yields in lieu of verifiable yield records provided the upward adjustments impact no more than 20% of the fields on a particular farm. The calculation of expected crop yield shall:

(1) Be an average of the three highest yielding years taken from the last five years the particular crop was grown in the specific field or

(2) Be based on and consistent with soil productivity information contained in Virginia Nutrient Management Standards and Criteria, Revised November 1995.

<u>e. Expected crop yield shall be determined from any of the following methods on a given field:</u>
(1) Soil productivity group expected crop yields based on and consistent with soil productivity information contained in Virginia Nutrient Management Standards and Criteria, Revised 2005;</u>
(2) The farmer's past experience with crop yields in specific fields may be used to make reasonable adjustments to expected crop yields in e.(1) of this subsection in lieu of verifiable

DEPARTMENT OF CONSERVATION AND RECREATION Page 38 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

yield records provided the upward adjustments impact no more than 20% of the fields on a particular farm and the expected crop yields do no exceed the soil productivity group rating of any soil series that directly adjoins the soils contained in the specific field as indicated in the soil survey; or

(3) Verifiable past crop yields are utilized to determined expected crop yield. The calculation of expected crop yield shall be an average of the three highest yielding years taken from the last five years the particular crop was grown in the specific field

f. Representative soil analysis results for fields shall be determined by using standard soil sampling and analysis methods according to Agronomy Monograph #9, American Society of Agronomy Methods of Soil Analysis, Part 3, Chemical Methods, 1996 utilizing the Mehlich I extraction procedure for phosphorus or other methods <u>and laboratories approved by the</u> <u>department and</u> correlated to Mehlich I and utilizing correlation procedures contained in Virginia Nutrient Management Standards and Criteria, Revised November 1995 2005. Soil analysis results shall be dated no more than three years prior to the <u>beginning</u> date of the nutrient management plan. A single composite soil sample should represent an area up to approximately 20 acres. Fields such as those common to strip cropping may be combined when soils, previous cropping history, and soil fertility are similar. Representative soil samples <u>sample cores</u> shall be obtained from the soil surface to a depth of two to four inches (0 – 4") for fields which are not tilled <u>have not been tilled within the past three years</u>, and from the soil surface to a depth of six

DEPARTMENT OF CONSERVATION AND RECREATION Page 39 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

to eight inches (0-6") for fields which are tilled or have been tilled within the past three years. Soil sampling of fields based on grids of subfield areas may be utilized.

g. For existing operations, the most recent organic nutrient source analysis results or an average of past nutrient analysis results should for the specific operation within the last three year period shall be used to determine the nutrient content of organic nutrient sources. Manure analyses shall include percent moisture, total nitrogen or total Kjeldahl nitrogen, ammonium nitrogen, total phosphorus, and total potassium determined using laboratory methods consistent with Recommended Methods of Manure Analysis, publication A3769, University of Wisconsin, 2003 or other methods approved by the department. For plans on new animal waste facilities, average values analyses published in Virginia Nutrient Management Standards and Criteria, Revised November 1995 2005, should be utilized unless proposed manure storage and treatment conditions warrant the use of alternative data. Plant available nutrient shall be determined using the mineralization rates and availability coefficients found in Virginia Nutrient Management Standards and Criteria, Revised November 1995 2005, for different forms and sources of organic nutrients. Mineralization of organic nutrients from previous applications shall be accounted for in the plan.

 h. The expected nitrogen contributions from legumes shall be credited when determining nutrient application rates at levels which substantially conform to those listed in Virginia Nutrient Management Standards and Criteria, Revised November 1995 2005.

DEPARTMENT OF CONSERVATION AND RECREATIONPage 40 of 48NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

3. Soil pH influences nutrient availability <u>and crop nutrient utilization</u> and should be adjusted to the level suited for the crop. <u>Nutrient management plans shall contain lime recommendations to</u> <u>adjust soil pH to a level within the appropriate agronomic range for the existing crop or crop(s)</u> <u>to be grown. Recommendations shall address lime application if soil pH is below the optimal</u> <u>range. Nutrient management planners shall not recommend the application of lime, lime</u> <u>amended materials, or nutrient sources that are expected to raise the soil pH to a level that</u> <u>exceeds the appropriate agronomic range for the growing crop or crop(s) to be grown based on</u> <u>recommendations contained in Virginia Nutrient Management Standards and Criteria, Revised</u> <u>2005.</u>

4. Nutrient application timing.

a. Timing recommendations for nutrient applications shall be as close to plant nutrient uptake periods as reasonably possible. To reduce the potential for nutrient leaching or runoff, a certified nutrient management planner shall recommend planting an agronomically feasible crop within 30 days of the planned nutrient application if no actively growing crop is in place. For organic nutrient sources, planned applications may be recommended between December 21 and March 16, if necessary, if a crop will be planted during the normal spring planting season and sites have low surface runoff potential due to slope or crop residue or if management practices such as injection are recommended to reduce the potential for surface runoff of organic nutrient sources.

DEPARTMENT OF CONSERVATION AND RECREATION Page 41 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

A certified nutrient management planner shall utilize procedures contained in Virginia Nutrient Management Standards and Criteria, Revised November 1995, to assist in determining the timing of nutrient applications.

a. Timing recommendations for nutrient sources containing nitrogen shall be as close to plant nutrient uptake periods as reasonably possible. A certified nutrient management planner shall utilize procedures contained in Virginia Nutrient Management Standards and Criteria, Revised 2005, to determine the timing of nutrient applications. To reduce the potential for nutrient leaching or runoff, a certified nutrient management planner shall recommend applications of nitrogen containing materials only to sites where an actively growing crop is in place at the time of application or where a timely planted crop will be established within 30 days of the planned nutrient application, except as specified in subsections b or c. If such nutrient applications are made to fall seeded crops such as small grain, the crop planted shall be capable of germination and significant growth before the onset of winter so the crop is able to take up the available applied nitrogen.

b. If necessary, organic nutrient source applications may be within 60 days of planting a spring seeded crop to sites that: (i) are not environmentally sensitive sites as identified in 4VAC5-15-10 or Virginia Nutrient Management Standards and Criteria, Revised 2005, and (ii) have at least 60 percent uniform ground cover from an existing actively growing crop such as a small grain trap

DEPARTMENT OF CONSERVATION AND RECREATION Page 42 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

crop or fescue with exposed plant height of three inches or more. Such nutrient applications shall not exceed application rates of the spring seeded crop.

c. Composted organic nutrient sources having a final carbon to nitrogen ratio of 25:1 or greater are exempt from requirements a. and b. of this subsection if analyzed for carbon to nitrogen ratio at the conclusion of the composting process and results are obtained prior to land application. If composted organic nutrient sources are applied greater than 30 days prior to crop planting on sites with less than 60% crop residue cover, the plan shall require chisel plowing or ridge tilling within 48 hours of application of the composted organic nutrient source. If ridge tilling or chisel plowing is utilized, the equipment should be operated predominately along the contour so that uniform parallel ridges are created that will improve soil roughness and reduce runoff potential until any finishing tillage operations are performed close to the time of crop planting. The planner shall recommend soil nitrate testing to determine nitrogen application rates during the growing season following the application of composted organic nutrient sources.

b. <u>d.</u> The nutrient management planner shall recommend split application of inorganic nitrogen fertilizers as starter or broadcast and sidedressing or top dressing in row crops and small grains consistent with procedures contained in Virginia Nutrient Management Standards and Criteria, Revised November 1995 2005, on environmentally sensitive sites <u>as identified in 4VAC5-15-10</u>. Split applications of inorganic nitrogen fertilizers and irrigation scheduling shall be recommended for crops to receive irrigation. The use of a pre-sidedress nitrogen test (PSNT) can

DEPARTMENT OF CONSERVATION AND RECREATION Page 43 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

help to determine additional nitrogen needs during the growing period. In lieu of split applications, the planner may recommend the application of the total nitrogen requirement for spring planted row crops within one week prior to planting if at least 50 % of the plant available nitrogen requirement of the crop is supplied with slowly available nitrogen sources.

e. <u>e.</u> Nutrient applications on frozen or snow covered grounds should be avoided <u>ground shall not</u> <u>be recommended in nutrient management plans.</u> If an emergency situation such as storage system freeze-up necessitates the application of organic nutrient sources, select fields which have <u>the</u> planner may advise the producer to apply no more than 40 pounds of plant available nitrogen per acre and deduct the applied nitrogen from other planned applications for the current or next crop <u>if the field has: (i)</u> slopes of less than 5.0% which are either planted in cover crops or have significant crop residue present <u>6</u> %; (ii) 60 % uniform ground cover from an existing actively growing crop such as a small grain trap crop or fescue with exposed plant height of three inches or more; (iii) a minimum of a 200 foot vegetated or adequate crop residue buffer between the application area and all surface water courses and; (iv) soils characterized by USDA as "well drained."

5. Application method for nutrients.

a. The application of nitrogen <u>containing materials</u> shall be managed to minimize runoff, leaching and volatilization losses.

b. Applications of liquid manures or sludges utilizing irrigation shall not be recommended to be applied at <u>hydraulic</u> rates above those contained in Virginia Nutrient Management Standards and Criteria, Revised <u>November 1995</u> 2005.

c. Plans shall not recommend liquid manure or sludge application rates utilizing nonirrigation liquid spreading equipment which exceed 14,000 gallons per acre (approximately one-half (0.5) inch) per application. The amount of liquid manure or sludge application in plans will not exceed the hydraulic loading capacity of the soil at the time of each application. If a subsequent pass across a field is necessary to achieve the desired application rate, the plan will allow for sufficient drying time.

d. Where possible, the planner should recommend that biosolids, industrial wastes, and manures be incorporated or injected in the crop root zone <u>in order to reduce losses of nitrogen to the</u> <u>atmosphere and to increase the plant available nitrogen to phosphorus ratio of these nutrient</u> <u>sources relative to crop nutrient needs</u>. Lime stabilized biosolids should not be injected due to the creation of a localized band of high soil pH unless subsequent practices are utilized, such as disking, in order to adequately mix the soil.

e. The planner shall recommend <u>buffer zones</u> <u>setbacks</u> around wells, springs, surface waters, sinkholes, and rock outcrops where manure, or biosolids, <u>or industrial waste</u> should not be

DEPARTMENT OF CONSERVATION AND RECREATION Page 45 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

applied. Such buffer zones <u>setbacks</u> recommended shall be consistent with criteria contained in Virginia Nutrient Management Standards and Criteria, Revised November 1995 <u>2005 unless</u> <u>alternative setbacks or buffers are specified in regulations or permits pertaining to the site. For</u> <u>sites impacted by other regulations or permits, the planner shall include the setbacks and buffers</u> <u>specified in regulations promulgated under § 32.1-164.5 for sewage sludge, § 62.1-44.17:1 for</u> <u>animal waste, § 62.1-44.17:1.1 for poultry waste, § 10.1-2100 et. seq. for sites in Chesapeake</u> <u>Bay Preservation areas, and permits for industrial waste land application. The land area within</u> <u>setback and buffer areas shall be deducted from field acreage to determine usable field acreage</u> <u>for nutrient application in nutrient management plans.</u>

B. Manure production and utilization.

 The planner shall estimate the annual manure quantity produced on each farm utilizing tables and forms contained in Virginia Nutrient Management Standards and Criteria, Revised November 1995 2005, or from actual farm records of manure pumped or hauled during a representative 12-month period.

 The nutrient management plan shall state the total amount of manure produced and the amount that can be used on the farm, utilizing the information and methods provided in the Virginia Nutrient Management Standards and Criteria, Revised November 1995 2005. The plan shall

DEPARTMENT OF CONSERVATION AND RECREATION Page 46 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

discuss any excess manure and shall provide recommendations concerning options for the proper use of such excess manure.

C. Plans shall identify and address the protection from nutrient pollution of environmentally sensitive sites.

D. Plan maintenance and revisions.

1. A site-specific nutrient management plan developed in accordance with all requirements of these regulations, including specified crops or crop rotations, shall provide information on soil fertility and seasonal application of required nutrients for one to five years of crop production. Plans developed for a period of time greater than three years and up to five years should generally shall be limited to sites in permanent pasture or continuous hay rotations.

2. The plan shall indicate state a need for immediate modification if cropping systems, rotations, fields, (i) animal numbers are to increase above the level specified in the plan, (ii) animal type types including intended market weights , or management are to be changed, added or removed (iii) additional imported manure, biosolids, or industrial waste that was not identified in the existing plan is to be applied to fields under the control of the operator, or (iv). The planner shall state in the plan that such plan will be invalid if available land area for the utilization of manure decreases below the level necessary to utilize manure in the plan, or if changes in animal

DEPARTMENT OF CONSERVATION AND RECREATION Page 47 of 48 NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

numbers or type affect land area necessary to utilize manure. The plan shall also state a need for modification if cropping systems, rotations, or fields are changed and phosphorus will be applied at levels greater than crop nutrient needs based on soil analysis as determined from procedures in Virginia Nutrient Management Standards and Criteria, Revised 2005.

3. Adjustments to manure production and application should be made if there are increases in animal numbers or changes in how animal waste is stored or applied, or when there are changes in nutrient content of manure resulting from changing feed ration rations, animal types, or new sampling and analysis for nutrient content and application rate calculations.

4. Soil analysis shall be recommended for each field at least once every three years to determine the soil fertility and pH, and to update the nutrient management plan.

5. Manure analysis shall be recommended before field application until a baseline nutrient content is established for the specific manure type on the corresponding farm operation. After a baseline nutrient content is established, a manure analysis shall be recommended at least once every three years for dry or semisolid manures, and at least once every year for liquid manures.

6. Modified top dressing or sidedressing application rates of nitrogen may be recommended if a pre-sidedress nitrogen test (PSNT) administered during the growing season indicates different levels of nitrogen than planning time calculations <u>if the use of the PSNT and interpretation of the</u>

DEPARTMENT OF CONSERVATION AND RECREATIONPage 48 of 48NUTRIENT MANAGEMENT TRAINING AND CERTIFICATION REGULATIONS

test results are consistent with Virginia Nutrient Management Standards and Criteria, Revised 2005.

DOCUMENTS INCORPORATED BY REFERENCE

Virginia Nutrient Management Standards and Criteria, Department of Conservation and Recreation, Division of Soil and Water Conservation, Revised November 1995 2005. Virginia Commercial Vegetable Production Recommendations for 1995 2004, Virginia Cooperative Extension Service, Publication No. 456-420.

<u>Electronic Field Office</u> Technical Guide, <u>Soil Conservation Services Natural Resources</u> Conservation Service, United States Department of Agriculture.

Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, Second Edition, 1986, American Society of Agronomy.

Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, Second Edition, 1982, American Society of Agronomy.

Methods of Soil Analysis, Part 3, Chemical Methods, 1996, Soil Science Society of America / American Society of Agronomy.

Recommended Methods of Manure Analysis, publication A3769, University of Wisconsin, 2003 Virginia Phosphorus Index Version 1.3 Technical Guide, Revised March 2005, Virginia Tech.

Commonwealth of Virginia

Virginia Nutrient Management Standards and Criteria Revised 2005

Department of Conservation and Recreation Division of Soil and Water Conservation 203 Governor Street, Suite 206 Richmond, VA 23219-2094

(804) 786-2064

Table of Contents

Instructions	1
Section I. Agronomic and Environmental Management of Soils and Other Site Features	3
Table 1-1: Soil Productivity Groupings for Various Cropping Categories	3
Table 1-2: Estimated Yields in Bushels or Tons per Acre	
Table 1-3: Utilizing Erosion/Slope Information	
Section I.A. Nitrogen Timing Criteria for Various Materials	27
Section I.B. Explanation of Environmentally Sensitive Sites	28
Table 1-4: Nitrogen Loss Risk and Environmentally Sensitive Ratings	29
Section I.C. Recommended Setback Areas	
Section II. Soil Test Calibrations and Correlations	40
Table 2-1: Virginia Tech Soil Test Calibrations	40
Section II.A. Correlation of Soil Analysis Results for A & L Laboratory	
Section II.B. Correlation of Soil Analysis Results for Brookside Laboratory	41
Section II. C. Correlation of Soil Analysis Results for Logan Labs., Inc.	
Section II.D. Correlation of Soil Analysis Results for Spectrum Analytic, Inc.	
Section II.E. Correlation of Soil Analysis Results for Waters Agricultural Lab., Inc.	
Section III. Lime Recommendations for Virginia Crops	
Section IV. Phosphorus Management	
Table 4-1: Virginia Phosphorus Saturation Levels Where Phsophorus Shall not be applied	
Table 4-2: Phosphorus Environment Thresholds	
Table 4-3: Interpretation of Phosphorus Index Value	
Table 4-4: Erosion Risk Assessment Formula	
Table 4-5: Topography and Climate Factors	
Table 4-6: Tillage Management Table 4-7: VA Nutrient Management Planning P ₂ O ₅ Removal Table for Grain and Forage Crops	
Section V. Crop Nutrient Recommendations (VALUES).	
Figure 5-1: Nitrogen Uptake by Wheat	
Figure 5-2: Growth Stage 25, Nitrogen Application	10
Figure 5-3: Growth Stage 30 Nitrogen Application	
Figure 5-4: White Potatoe Petiole Sap Nitrate before Flowering	
Section VI. Turfgrass Nutrient Recommendations	
Figure 6-1: Average Dates of First Killing Frost in Fall	
Figure 6-2: Average Dates of Last Killing Frost in Spring	
Figure 6-3: Nitrogen Rate Adjustment when using Slowly Available Forms of Nitrogen on Turf	
Section VII. Estimated Nitrogen Availability to Succeeding Crops From Legumes	
Table 7-1: Estimated Nitrogen Availability to Succeeding Crops From Legumes	98
Section VIII. Manure Management	
Table 8-1: Manure Ammoniun Nitrogne Availability Coefficients	99
Table 8-2: Coefficients for Organic N Availability in Manures	99
Table 8-3: Manure Residual Factors for Previous Applications	
Table 8-4: Average Analysis for Manure Tested in Virginia	
Table 8-5: Animal Manure Production Rates	
Table 8-6: Annual Liquid Animal Waste Volume Available for Land Application	
Table 8-7: Virginia Annual Normal Precipitation and Lake Evaporation	
Table 8-8: Maximum Wastewater Irrigation Application Rates for Different Soil Types	
Section IX. Biosolids Management	
Table 9-1: Estimated Nitrogen Mineralization Rates for Biosolids	
Table 9-2: Biosolids Ammonium Nitrogen Availability Coefficients	107

Instructions for the Use of the Virginia Nutrient Management Standards and Criteria, Revised 2005

□ When developing nutrient recommendations, first determine the soil map units (soil series) within field boundaries from the soil survey maps of the subject farm. Using this information, the soil productivity group is determined from Table 1-1 for each crop to be grown.

□ Using the Virginia Agronomic Land Use Evaluation System (VALUES), Table 1-2, the expected yield of a crop for any one field may be determined in one of two ways. If any single soil productivity group comprises 67% or more of a field, this is considered a predominant soil group, and it may be used to establish the expected yield for the entire field. The other method is to use a weighted average of all soil productivity groups to determine the expected yield and nutrient recommendations. If several map units make up a field representing multiple productivity groups, none of which account for 67% or more of the field, then the weighted average method to determine the expected crop yield shall be used.

□ When using the weighted average method, determine expected crop yield for each soil map unit from Table 1-2, and determine the weighted average yield for the field by summing the fractional yields for each soil map unit. After the weighted average expected yield is calculated and any yield reductions are considered, the soil productivity group of the field is determined by finding the expected crop yield in Table 1-2 which is closest to the weighted average yield.

□ To establish an expected yield for a soil series complex use a weighted average formula with percentages of 60%-40% for complexes with two named soils and 50%-30%-20% for complexes with three named soils. For example for a Frederick-Christian-with included soils, calculate the expected yield as the sum of 60% of the expected yield based on VALUES for the Frederick and 40% of the expected yield based on VALUES for the Christian.

□ Once the expected yield for a crop is determined, a yield reduction will need to be applied if certain conditions exist within the soil profile such as eroded topsoil, slope, coarse fragments and rock outcrops. These conditions are explained with the associated yield reductions in Table 1-3.

□ If producer records are utilized to establish expected crop yields, average the three highest yields achieved over the last five crop years the particular crop was grown in the field, (i.e. exclude the two lowest crop yields before calculating the average). The corresponding soil productivity group for the field is found by finding the expected crop yield in Table 1-2 that is closest to the above determined yield.

□ A field shall be considered an environmentally sensitive site, where any part of the field drains into a sinkhole or if at least 33% of the area of the field contains one or a combination of the following features:

- 1. Soils with high potential for leaching based on soil texture or excessive drainage (Table 1-4);
- Shallow soils less that 41 inches deep likely to be located over fractures or limestone bedrock (Table 1-4);
- 3. Subsurface tile drains;

- 4. Soil with high potential for subsurface lateral flow based on soil texture and poor drainage able 1-4);
- 5. Floodplains as identified by soils prone to frequent flooding in county soil surveys;
- 6. Lands with slopes greater than 15%.

Fields containing envrionmentally sensitive sites may be subdivided into separate fields, if the areas can be managed individually and the operator agrees to manage each area as written in the plan.

□ The results of soil testing labs approved by the Department must be correlated to Virginia Tech Mehlich I using Table 2-1, and the conversion procedures in Sections II.A, II.B., and II.C. Only the Virginia Tech soil test scale and the conversion of other approved labs to the Virginia Tech soil test scale can be used to develop phosphorus and potassium recommendations when developing Virginia nutrient management plans.

□ Nitrogen fertilizer recommendations are developed by identifying the soil productivity group for the crop to be grown in Table 1-1, and selecting a recommended application rate from the various crops listed in Section V. Phosphorus and potassium recommendations are determined based on the soil test results for the field by the accompanying table listed with each crop in Section V.

□ Use the Virginia Tech soil test rating (such as M+) to determine Phosphorus and Potassium recommendations from Section V. If the soil test level is L, M, or H use the midpoint of the recommended nutrient application range. If the soil test level is L-, M-, or H- use the highest value of the recommended nutrient application range. If the soil test level is L+, M+, or H+ use the lowest value of the recommended nutrient application range.

❑ When using soil productivity groupings to determine expected yields, if a soil is listed in Table 1-1 as not suited (NS) for a particular crop, the farmer should be advised that the particular crop is not recommended to be grown on the soil. If the crop will still be grown in that soil type, use the lowest productivity group rating for that crop to determine the expected yield (i.e, if alfalfa will be grown on a soil listed as NS, then the planner would use productivity group III to determine nutrient application rates.

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Abell	G	lla	lla							
Abell variant	G	lla	lla	I		 	1			
Ackwater	K	llb	llb	1	" 	 				
Acredale	C	lb	lb		lb	NS*				
(drained)	C	u	di		u	NS NS	1			
Acredale	00	V	V	V	V	NS*	NS*			
(undrained)	00	v	v	v	v	NO	NO NO			
Aden (drained)	С	lb	lb		lb	NS*				
Aden	00	U V	V	V	V	NS*	NS*			
(undrained)	00	v	v	v	v	NO	NO NO			
Airmont	BB	IVb	IVb	III	IV	NS*				
Alaga	 	V	V		V	NS*	NS*			
Alamance	FF	IVb	IVb		۰ IV	NS*				
Alanthus	D	lb	lb	1	lb					
Albano	KK	V	V	V	V	NS*	IV			
Albemarle	JJ	V	V	IV	V	NS*	IV			
Alderflats	NN	V	V	V	V	NS*	NS*			
Aldino	W	IVa	IVa	IV		NS*	IV			
Aldio	Y	IVa	IVa			NS*				
Allegheny	I	Ilb	Ilb	1		 				
Alluvial Land,	MM	V	V	V	V II	 NS*	IV			
wet	IVIIVI	v	v	v	v	NO	IV			
Alonemill	А	la	la		la					
Alonemill,	1	lla	lla	I	 	NS*				
Fluvaquentic	I	na	na	•		NO	1			
Alonzville	1	llb	llb	1	II					
Altavista	B	la	la		la la	 	1			
Altavista,	B	la	la		la	<u> </u>	1			
variant	5	ia	ia	•	ia					
Alticrest	E	lla	lla	I		NS*				
Angie	AA	IVa	IVa			NS*	IV			
Angie variant	AA	IVa	IVa			NS*	IV IV			
Appling	V	IVa	IVa							
Appling gritty	V	IVa	IVa			 				
Appomattox	0	llb	IIb			 	 			
Arapahoe	EE	IVb	IVb		IV	 NS*	NS*			
Arcola	U	IIIb	IIIb		10 11					
Ardilla	W	IVa	IVa	IV		NS*	IV			
Argent	PP	V	V	V	V	NS*	NS*			
Arkaqua	 I	lla	lla	l	U U	NS*				
Ashburn	BB	IVb	IVb		IV	NS*				
Ashe	JJ	V	V	IV	V	NS*	IV			
Ashlar	FF	IVb	IVb		IV	NS*				
Assateague	QQ	V	V	V	V	NS*	NS*			

Section I. Agronomic and Environmental Management of Soils and Other Site Features

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Athol	М	llb	llb	I	II	I	II			
Atkins	NN	V	V	V	V	NS*	NS*			
Atlee	Q	Illa	Illa		II	NS*				
Augusta (drained)	Р	llb	llb		II	NS*	III			
Augusta (undrained)	Z	IVa	IVa	IV		NS*	NS*			
Augusta variant(drained)	Р	llb	llb	II	II	NS*	111			
Augusta variant(undrain ed)	Z	IVa	IVa	IV		NS*	NS*			
Aura	Т	IIIb	IIIb			NS*				
Austinville	0	llb	llb			 				
Axis	PP	V	V	V	V	NS*	NS*			
Aycock	R	Illa	Illa		U U					
Ayersville	FF	IVb	IVb		IV	NS*				
Backbay	PP	V	V	V	V	NS*	NS*			
Badin	X	IVa	IVa		- iii					
Baile	HH	IVb	IVb		IV	NS*	IV			
Bailegap	GG	IVb	IVb	IV	IV	NS*				
Balsam	GG	IVb	IVb	IV	IV	NS*				
Bama	R	Illa	Illa		II		II			
Banister	K	llb	llb	I	II		I			
Barclay	Е	lla	lla		II	NS*	II			
Bateau	I	lla	lla	-		NS*	I			
Bayboro (drained)	С	lb	lb	I	lb	NS*	I			
Bayboro (undrained)	00	V	V	V	V	NS*	NS*			
Beckham	0	llb	llb	Ι	II	II	II			
Bedington	FF	IVb	IVb	=	IV	NS*				
Beech	L	llb	llb		II		II			
Beech Grove	JJ	V	V	IV	V	NS*	IV			
Belhaven	PP	V	V	V	V	NS*	NS*			
Belspur	Н	lla	lla		II	NS*	IV			
Beltsville	BB	IVb	IVb		IV	NS*				
Belvoir	BB	IVb	IVb		IV	NS*				
Benthole	22	IVb	IVb		IV	NS*				
Bentley	R	Illa	Illa		ll					
Berks	JJ	V	V	IV	V	NS*	IV			
Berks variant	JJ	V .	V	IV	V	NS*	IV			
Bermudian	A	la	la	<u> </u>	la					
Bertie	J	llb	llb	<u> </u>		NS*				
Bertie, variant	J	llb	llb			NS*				
Bethera (drained)	С	lb	lb	II	lb	NS*				

Sail	Droduct	ivity Cro			ronning Co	togorico	
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	cropping Ca	Alfalfa	Tall Grass, Clover, Hay, Pasture
Bethera	00	V	V	V	V	NS*	NS*
(undrained)							
Bethesda	JJ	V	V	IV	V	NS*	IV
Bethlehem	V	IVa	IVa	I			
Bibb	EE	IVb	IVb	III	IV	NS*	NS*
Biltmore	I	V	V	III	V	NS*	NS*
Birdsboro	L	llb	llb	I	II		II
Blackthorn	GG	IVb	IVb	IV	IV	NS*	
Bladen	С	lb	lb	II	lb	NS*	I
(drained)							
Bladen	00	V	V	V	V	NS*	NS
(undrained)							
Blago	HH	IVb	IVb	III	IV	NS*	IV
Blairton	FF	IVb	IVb	III	IV	NS*	
Bland	Y	IVa	IVa	III		NS*	
Bleakhill	J	llb	llb		II	NS*	I
Blocktown	JJ	V	V	IV	V	NS*	IV
Bloodyhorse	JJ	V	V	IV	V	NS*	IV
Bluemont	JJ	V	V	IV	V	NS*	IV
Bohicket	PP	V	V	V	V	NS*	NS*
Bojac (ES VA Beach, Ches.)	Т	IIIb	IIIb	II	II	NS*	III
Bojac (Mainland, excluding VA Beach & Ches.)	DD	IVb	IVb	II	IV	NS*	111
Bolling	J	llb	llb	I	II	NS*	I
Bolling variant	J	llb	llb	I	II	NS*	I
Bolton	М	llb	llb	I	II		II
Bonneau	DD	IVb	IVb	II	IV	NS*	
Bookwood	U	IIIb	IIIb	II	II	111	II
Botetourt	G	lla	lla	I	II	II	I
Bourne	BB	IVb	IVb		IV	NS*	
Bourne variant	BB	IVb	IVb		IV	NS*	
Bowmansville	I	lla	lla	I	II	NS*	I
Braddock	0	llb	llb		I		II
Brandywine	FF	IVb	IVb		IV	NS*	
Brecknock	U	IIIb	IIIb	II	I		II
Bremo	JJ	V	V	IV	V	NS*	IV
Brentsville	FF	IVb	IVb	III	IV	NS*	
Brevard	В	la	la	I	la	I	I
Brickhaven	Y	IVa	IVa		III	NS*	
Brinkerton	LL	V	V	V	V	NS*	IV
Brinklow	FF	IVb	IVb	III	IV	NS*	
Broadway	А	la	la	I	la	I	I
Brockroad	V	IVa	IVa				
Brownsville	JJ	V	V	IV	V	NS*	IV
Brownwood	JJ	V	V	IV	V	NS*	IV

Soil	Product	ivity Gro			cropping Ca	togorios	
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture
Brumbaugh	L	llb	llb	I	II		II
Brushy	JJ	V	V	IV	V	NS*	IV
Buchanan	BB	IVb	IVb	III	IV	NS*	III
Buckanan	JJ	V	V	IV	V	NS*	IV
cobbly							
Buckhall	V	IVa	IVa	=			
Buckingham	JJ	V	V	IV	V	NS*	IV
Bucks	U	IIIb	IIIb	II	II	111	II
Buckton	А	la	la	I	la	I	I
Buffstat	V	IVa	IVa	II		111	III
Bugley	JJ	V	V	IV	V	NS*	IV
Buncombe	II	V	V		V	NS*	NS*
Burketown	BB	IVb	IVb		IV	NS*	III
Burrowsville	BB	IVb	IVb		IV	NS*	III
Burton	FF	IVb	IVb		IV	NS*	III
Buzzrock	JJ	V	V	IV	V	NS*	IV
Cahaba	R	Illa	Illa	II	II	111	II
Calverton	BB	IVb	IVb		IV	NS*	III
Calvin	JJ	V	V	IV	V	NS*	IV
Calvin cobbly	JJ	V	V	IV	V	NS*	IV
Camocca	PP	V	V	V	V	NS*	NS*
Caneyville	Y	IVa	IVa			NS*	III
Cape Fear (drained)	С	lb	lb	II	lb	NS*	I
Cape Fear (undrained)	00	V	V	V	V	NS*	NS*
Captina	BB	IVb	IVb		IV	NS*	
Carbo	Y	IVa	IVa			NS*	
Carbonton	Ý	IVa	IVa			NS*	
Cardiff	FF	IVb	IVb		IV	NS*	 III
Cardova	JJ	V	V	IV	V	NS*	IV
Caroline	AA	IVa	IVa		III	NS*	IV
Cartecay		lla	lla			NS*	
Carteret	PP	V	V	V	V	NS*	NS*
Cataska	JJ	V	V	IV	V	NS*	IV
Catharpin	X	IVa	IVa		III		II
Catlett	JJ	V	V	IV	V	NS*	IV
Catlett variant	JJ	V	V	IV	V	NS*	IV
Catoctin	JJ	V	V	IV	V	NS*	IV
Catoctin variant	JJ	V	V	IV	V	NS*	IV
Catpoint		V	V		V	NS*	NS*
Caverns		lla	lla			NS*	
Cecil	X	IVa	IVa				
Cedarcreek	GG	IVb	IVb	IV	IV	NS*	
Chagrin	A	la	la	1	la		
Chagrin variant	A	la	la	I	la		· ·
Chandler	FF	IVb	IVb	III	IV	NS*	
		-					

Soil	Product	ivity Gro	Table		cropping Ca	tegories	
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture
Chapanoke	С	lb	lb	II	lb	NS*	I
(drained)							
Chapanoke (undrained)	00	V	V	V	V	NS*	NS*
Charity	Ν	llb	llb	I	II	II	II
Chastain	LL	V	V	V	V	NS*	IV
Chatuge (drained)	С	lb	lb	II	lb	NS*	I
Chatuge (undrained)	00	V	V	V	V	NS*	NS*
Chavies	U	IIIb	IIIb		II		11
Chavies variant	U	IIIb	IIIb				
Chenneby		lla	lla			NS*	
Chesapeake	В	la	la		la		
Chester	D	lb	lb		lb		
Chester Loam	D	lb	lb		lb		
Chesterfield	V	IVa	IVa		III		
Chestnut	GG	IVb	IVb	IV	IV	NS*	
Chewacla		lla	lla			NS*	1
Chickahominy	LL	V	V	V	V	NS*	IV
Chilhowie	JJ	V	V	IV	V	NS*	IV
Chincoteague	PP	V	V	V	V	NS*	NS*
Chipley	EE	IVb	IVb		IV	NS*	NS*
Chiswell	JJ	V	V	IV	V	NS*	IV
Christian	AA	IVa	IVa			NS*	IV
Christiana	AA	IVa	IVa			NS*	IV
Cid	KK	V	V	V	V	NS*	IV
Clairborne	М	llb	llb	Ι	II		II
Clairborne	U	IIIb	IIIb	=	II		II
Clapham	BB	IVb	IVb	III	IV	NS*	
Clarksburg	W	IVa	IVa	IV		NS*	IV
Clarksville	GG	IVb	IVb	IV	IV	NS*	
Clearbrook	JJ	V	V	IV	V	NS*	IV
Cliffield	JJ	V	V	IV	V	NS*	IV
Clifford	Х	IVa	IVa	=		111	II
Clifton	L	llb	llb	Ι	II	111	II
Clover	V	IVa	IVa				
Cloverlick	JJ	V	V	IV	V	NS*	IV
Clubcaf	LL	V	V	V	V	NS*	IV
Clymer	U	IIIb	IIIb		II		II
Codorus	Α	la	la	<u> </u>	la		
Codorus	Α	la	la		la		
Codorus stony	Α	la	la	<u> </u>	la		
Codorus variant	Α	la	la		la		I
Colescreek	L	llb	llb		ll		
Colfax	BB	IVb	IVb		IV	NS*	
Colfax variant	BB	IVb	IVb		IV	NS*	
Colleen	KK	V	V	V	V	NS*	IV

Soll I	Producti	Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	upings for Grain Sorghum	Small Grain	Soybeans	tegories Alfalfa	Tall Grass, Clover, Hay, Pasture					
Colvard	II	V	V		V	NS*	NS*					
Colvard fine		V	V	===	V	NS*	NS*					
Colvard stony		V	V	===	V	NS*	NS*					
Combs	А	la	la	I	la	I	I					
Comus	А	la	la	-	la		I					
Comus	А	la	la		la	I	I					
Conetoe	DD	IVb	IVb		IV	NS*						
Congaree	А	la	la	I	la	I						
Coosaw	DD	IVb	IVb		IV	IV-V						
Corolla	EE	IVb	IVb		IV	NS*	NS*					
Corydon	JJ	V	V	IV	V	NS*	IV					
Cotaco	G	lla	lla	I								
Cotaco cobbly	G	lla	lla									
Cotaco variant	G	lla	lla									
Cottonbend	Ĺ	llb	llb									
Coursey	G	lla	lla									
Cowee	N	llb	llb									
Coxville	LL	V	V	V	V	NS*	IV					
Craggey	JJ	V	V	IV	V	NS*	IV					
Craigsville	CC	IVb	IVb		IV	NS*						
Craven	HH	IVb	IVb		IV	NS*	IV					
Creedmoor	KK	V	V	V	V	NS*	IV					
Creedmoor	KK	V	V	V	V	NS*	IV					
variant		•	·	·	·	110						
Croton	LL	V	V	V	V	NS*	IV					
Cullasaja	FF	IVb	IVb		IV	NS*	III					
Cullen	N	llb	llb	I								
Culleoka	U	IIIb	IIIb									
Culpeper	X	IVa	IVa									
Culpeper	X	IVa	IVa		III							
variant												
Daleville (drained)	С	lb	lb	=	lb	NS*	I					
Daleville (undrained)	00	V	V	V	V	NS*	NS*					
Dan River	G	lla	lla	I								
Dandridge	ĴĴ	V	V	IV	V	 NS*	IV					
Danripple	L	llb	llb	I								
Davidson	N	llb	llb	I								
Dawhoo	PP	V	V	V	V	 NS*	 NS*					
Dawhoo	PP	V	V	V	V	NS*	NS*					
Dawhoo variant	PP	V	V	V	V	NS*	NS*					
Decatur	M	llb	llb		II II							
Dekalb	FF	IVb	IVb		IV	NS*						
Dekalb variant	FF	IVb	IVb		IV	NS*						
Delanco	В	la	la	 I	la							
Delila	HH	IVb	IVb		IV	NS*	IV					
Dellwood	CC	IVb	IVb		IV	NS*						

Soil	Product	ivity Gro			cropping Ca	togorios	
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture
Deloss	С	lb	lb	II	lb	NS*	I
(drained)							
Deloss	00	V	V	V	V	NS*	NS*
(undrained)							
Derroc	CC	IVb	IVb		IV	NS*	
Devotion	FF	IVb	IVb		IV	NS*	
Diana Mills	V	IVa	IVa		<u> </u>		
Dillard	G	lla	lla				
Dogue	K	llb	llb		ll		
Dogue variant	K	llb	llb		ll		l
Dorovan	PP	V	V	V	V	NS*	NS*
Dothan	Q	Illa	Illa		II	NS*	
Downer	DD	llb	llb		IV	NS*	
Dragston	E	lla	lla	<u> </u>	II	NS*	II
Drall	FF	IVb	IVb		IV	NS*	
Drapermill	U	IIIb	IIIb		II		II
Drapermill	U	IIIb	IIIb		II		II
Drypond	JJ	V	V	IV	V	NS*	IV
Duckston	QQ	V	V	V	V	NS*	NS*
Duffield	G	lla	lla		II	Ш	I
Dulles	Y	IVa	IVa	III		NS*	
Dumfries	Т	IIIb	IIIb		II	NS*	
Dunbar	Р	llb	llb	I	II	NS*	
(drained)			I I			-	
Dunbar	Z	IVa	IVa	IV	111	NS*	NS*
(undrained)							
Dunning	Н	lla	lla	III	II	NS*	IV
(drained)							
Dunning	NN	V	V	V	V	NS*	NS*
(undrained)	14						
Duplin	K	llb	llb		<u> </u>		I
Durham	CC	IVb	IVb		IV	NS*	
Dyke	0	llb	llb	I			
Easthamlet	KK	V	V	V	V	NS*	IV
Ebbing	G	lla	lla	1			
Edgehill	CC	IVb	IVb		IV	NS*	
Edgehill variant	CC	IVb	IVb		IV	NS*	
Edgemont	U	IIIb	IIIb				
Edneytown	L	llb	llb				
Edneyville	Т	IIIb	IIIb			NS*	
Edom	M	llb	llb				
Elbert	LL	V	V	V	V	NS*	IV
Elbert variant	LL	V	V	V	V	NS*	IV
Elioak	X	IVa	IVa				
Elk	A	la	la		la		
Elkton (drained)	C	lb	lb		lb	NS*	
Elkton	00	V	V	V	V	NS*	NS*
(undrained)	I						

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Elliber	М	llb	llb			I	II			
Elsinboro	L	llb	llb	1			II			
Emory	G	lla	lla	I	II	II	I			
Emporia	R	Illa	Illa		II		II			
Endcav	Y	IVa	IVa			NS*				
Enon	Y	IVa	IVa			NS*				
Enott	Y	IVa	IVa			NS*				
Ernest	W	IVa	IVa	IV		NS*	IV			
Escatawba	L	llb	llb	1			II			
Eubanks	Ν	llb	llb	1		II	II			
Eulonia	K	llb	llb	1	 					
Eunola	Т	IIIb	IIIb	11		NS*				
Evansham	LL	V	V	V	V	NS*	IV			
Evard	L	llb	llb							
Evesboro		V	V	III	V	NS*	NS*			
Exum	J	llb	llb	1		NS*	1			
Faceville	R	Illa	Illa				II II			
Fairfax	D	lb	lb		lb					
Fairpoint	JJ	V	V	IV	V	NS*	IV			
Fairview	X	IVa	IVa		III					
Fairystone	X	IVa	IVa		 					
Fallsington	E	lla	lla		 	NS*				
Fauquier	N	llb	llb							
Fauquier, deep phase	N	llb	llb	I	I	II	II			
Faywood	U	IIIb	IIIb							
Featherstone	PP	V	V	V	V	NS*	NS*			
Fedscreek	GG	IVb	IVb	IV	IV	NS*	111			
Feedstone	G	lla	lla				1			
Fisherman	QQ	V	V	V	V	NS*	NS*			
Fiveblock	JJ	V	V	IV	V	NS*	IV			
Flatwoods	М	llb	llb				II			
Fletcher	U	IIIb	IIIb				II			
Flume	R	Illa	Illa				II			
Fluvanna	Y	IVa	IVa			NS*				
Forestdale	LL	V	V	V	V	NS*	IV			
Fork (drained)	P	llb	llb		I	NS*	III			
Fork	Z	IVa	IVa	IV		NS*	NS*			
(undrained)	_									
Fork variant (drained)	Р	llb	llb	II	II	NS*				
Fork variant (undrained)	Z	IVa	IVa	IV		NS*	NS*			
Frankstown	U	IIIb	IIIb		II					
Frederick	M	llb	IIb	I		 				
Frederick/Lodi	M	llb	IIb	1	II					
Freemanville	Q	Illa	Illa		II	NS*				
French	A	la	la	1	la					

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Fripp	QQ	V	V	V	V	NS*	NS*			
Funkstown	A	la	la	1	la	1	1			
Gaila	FF	IVb	IVb		IV	NS*				
Gainesboro	FF	IVb	IVb		IV	NS*				
Galestown		V	V		V	NS*	NS*			
Galtsmill		V	V		V	NS*	NS*			
Georgeville	X	IVa	IVa		, III					
Germanna	L	llb	IIb		 					
Gertie	00	V	V	V	V	NS*	NS*			
Gilpin	U U	IIIb	llib	V	Ĭ					
Gilpin variant	U	IIIb	IIIb				 			
Gladehill	A	la	la	1	la la	1				
Glenelg(BRH)	N	llb	llb	1		 				
Glenelg(NV)	U	IIIb	IIIb			 	 			
Glenville	W	IVa	IVa	IV		NS*	II IV			
	GG	IVa	IVa	IV	IV	NS*				
Glynwood		IVb		IV IV	IV	NS*				
Glynwood Variant	GG	DVD	IVb	IV	IV	NS"	111			
	V	IVa	IVa							
Goblintown	=					NS*				
Goldsboro	J	llb V	llb V		ll V					
Goldston	JJ	-	-	IV	-	NS*	IV			
Goldvein	BB	IVb	IVb		IV	NS*				
Goldvein gritty	BB	IVb	IVb		IV	NS*				
Goresville	N	llb	llb	I						
Granville	R	Illa	Illa		<u> </u>					
Grassland	L	llb	llb	I	ll					
Greendale	A	la	la	<u> </u>	la		l			
Greenlee	CC	IVb	IVb		IV	NS*				
Grigsby	Α	la	la	I	la		I			
Grimsley	GG	IVb	IVb	IV	IV	NS*				
Gritney	Т	IIIb	IIIb		II	NS*				
Groseclose	М	llb	llb	I	II		II			
Grover	Х	IVa	IVa				II			
Guernsey	М	llb	llb	I	I	<u> </u>	II			
Gullion	В	la	la	I	la		I			
Gundy	V	IVa	IVa			11				
Gunstock	V	IVa	IVa	=		=				
Guyen	Z	IVa	IVa	IV	III	NS*	NS*			
Gwinnett	Х	IVa	IVa		III		II			
variant										
Hagerstown	М	llb	llb		I		II			
Halewood	U	IIIb	IIIb		I	=	II			
Halifax	KK	V	V	V	V	NS*	IV			
Hanceville	V	IVa	IVa			=				
Happyland	U	IIIb	IIIb		II	=	II			
Hartleton	FF	IVb	IVb		IV	NS*				
Hartsells	CC	IVb	IVb		IV	NS*	III			

Soil	Product	ivity Gro			cropping Ca	tegories	
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture
Hatboro	HH	IVb	IVb	III	IV	NS*	IV
Hawksbill	CC	IVb	IVb	II	IV	NS*	III
Hawksbill cobbly	CC	IVb	IVb	II	IV	NS*	
Hayesville	Х	IVa	IVa				
Haymarket	KK	V	V	V	V	NS*	IV
Hayter	L	llb	llb	I			
Haywood	JJ	V	V	IV	V	NS*	IV
Hazel	JJ	V	V	IV	V	NS*	IV
Hazel	JJ	V	V	IV	V	NS*	NS*
Hazel channery	JJ	V	V	IV	V	NS*	IV
Hazel Run	U	IIIb	IIIb	=	II	====	
Hazleton	JJ	V	V	IV	V	NS*	IV
Helena	KK	V	V	V	V	NS*	IV
Helena	KK	V	V	V	V	NS*	IV
taxadjunct							
Herndon	V	IVa	IVa	11		=	
Hibler	L	llb	llb	I		=	
Hickoryknob	Ν	llb	llb	I	II	=	II
Highsplint	CC	IVb	IVb		IV	NS*	
Hiwassee	0	llb	llb	I	II	=	
Hiwassee variant	0	llb	llb	I	II		II
Hoadley	BB	IVb	IVb		IV	NS*	
Hobucken	PP	V	V	V	V	NS*	NS*
Holly	NN	V	V	V	V	NS*	NS*
Hollywood	LL	V	V	V	V	NS*	IV
Hublersburg	М	llb	llb				
Huntington	А	la	la	I	la	I	
Hyde (drained)	С	lb	lb		lb	NS*	I
Hyde (undrained)	00	V	V	V	V	NS*	NS*
Ingledove	А	la	la	I	la	I	I
lotla	А	la	la		la		
Iredell	KK	V	V	V	V	NS*	IV
Iredell variant	KK	V	V	V	V	NS*	IV
Irongate	DD	IVb	IVb		IV	NS*	
Itman	JJ	V	V	IV	V	NS*	IV
luka	F	lla	lla	Ι	I		
Izagora	J	llb	llb	I	II	NS*	I
Jackland	KK	V	V	V	V	NS*	IV
Jedburg	Z	IVa	IVa	IV		NS*	NS*
Jefferson	U	IIIb	IIIb		II		II
Jefferson	U	IIIb	lllb		II		II
variant							
Johns (drained)	С	lb	lb	=	lb	NS*	I
Johns	00	V	V	V	V	NS*	NS*
(undrained)							

Soil	Product	ivity Gro			cropping Ca	togorios	
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture
Johns variant	С	lb	lb		lb	NS*	I
(drained)							
Johns variant	00	V	V	V	V	NS*	NS*
(undrained)							
Johnston	PP	V	V	V	V	NS*	NS*
Junaluska	U	IIIb	IIIb		II		II
Kalmia	S	Illa	Illa		II	NS*	
Kaymine	JJ	V	V	IV	V	NS*	IV
Keener	0	llb	llb		II	II	
Kelly	KK	V	V	V	V	NS*	IV
Kempsville	S	Illa	Illa		II	NS*	
Kenansville	DD	IVb	IVb		IV	NS*	
Kenansville variant	DD	IVb	IVb	I	IV	NS*	- 111
Keyport	K	llb	llb	I	I		I
Kinkora	С	lb	lb	II	lb	NS*	I
(drained)							
Kinkora	00	V	V	V	V	NS*	NS*
(undrained)							
Kinston	С	lb	lb	П	lb	NS*	I
(drained)							
Kinston (undrained)	00	V	V	V	V	NS*	NS*
Klej	EE	IVb	IVb		IV	NS*	NS*
Klinesville	JJ	V	V	IV	V	NS*	IV
Konnarock	JJ	V	V	IV	V	NS*	IV
Lackstown	K	llb	llb	I	II		
Laidig	W	IVa	IVa	IV	III	NS*	IV
Laidig cobbly	W	IVa	IVa	IV	III	NS*	IV
Lakehurst	EE	IVb	IVb	III	IV	NS*	NS*
Lakeland		V	V		V	NS*	NS
Lakin	I	V	V	III	V	NS*	NS
Landisburg	W	IVa	IVa	IV	III	NS*	IV
Lanexa	PP	V	V	V	V	NS*	NS*
Lansdale	FF	IVb	IVb		IV	NS*	III
Laroque	FF	IVb	IVb		IV	NS*	III
Lawnes	PP	V	V	V	V	NS*	NS*
Leadvale	BB	IVb	IVb		IV	NS*	III
Leaf (drained)	С	lb	lb		lb	NS*	
Leaf	00	V	V	V	V	NS*	NS*
(undrained)							
Leaksville	KK	V	V	V	V	NS*	IV
Leatherwood	00	V	V	V	V	NS*	NS*
Leck Kill	U	IIIb	IIIb		I		I
Leedsville	L	llb	llb	I	II		II
Leetonia		V	V		V	NS*	NS*
Legore	V	IVa	IVa				
Lehew	JJ	V	V	IV	V	NS*	IV

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Lenoir	LL	V	V	V	V	NS*	IV			
Leon	II	V	V		V	NS*	NS*			
Levy	PP	V	V	V	V	NS*	NS*			
Lew	FF	IVb	IVb		IV	NS*				
Lewisberry		V	V	III	V	NS*	NS*			
Lewisburg	CC	IVb	IVb		IV	NS*				
Library	KK	V	V	V	V	NS*	IV			
Lickdale (drained)	Н	lla	lla	III	II	NS*	IV			
Lickdale (undrained)	NN	V	V	V	V	NS*	NS*			
Lignum	LL	V	V	V	V	NS*	IV			
Lily	FF	IVb	IVb	v	۰ IV	NS*				
Linden	F	lla	lla	1						
Lindside	A	la	la		" la					
Littlejoe	V	IVa	IVa		III	<u> </u>				
Litz	JJ	V	V	IV	V	NS*	IV			
Lloyd	N	llb	Ilb	1	V II	 				
Lloyd variant	N	llb	IIb	I	<u> </u>	<u> </u>	 			
Lobdell	A	la	la	1	la I	<u> </u>	<u> </u>			
Lodi	M	llb	Ilb	I		<u> </u>				
Lostcove	FF	IVb	IVb	 	IV	NS*				
Louisa	JJ	V	V	IV	V	NS*	IV			
Louisa variant	JJ	V	V	IV	V	NS*	IV			
Louisburg	FF	IVb	IVb		IV	NS*				
Lowell	M	llb	Ilb	1		110				
Lucketts	Y	IVa	IVa	 	" 	NS*				
	DD	IVa	IVa		IV	NS*				
Lumbee	C	lb	lb	=	lb	NS*	1			
(drained) Lumbee (undrained)	00	V	V	V	V	NS*	NS*			
Lumbee variant	С	lb	lb	II	lb	NS*	I			
(drained) Lumbee variant (undrained)	00	V	V	V	V	NS*	NS*			
Lunt	AA	IVa	IVa			NS*	IV			
Lynchburg	E	lla	lla		 	NS*				
Macove	CC	IVb	IVb		IV	NS*				
Madison	X	IVa	IVa		III		II			
Madsheep	JJ	V	V	IV	V	NS*	IV			
Maggodee	A	la	la	I	la					
Magotha	PP	V	V	V	V	NS*	NS*			
Malbis	W	IVa	IVa	IV		NS*	IV			
Manassas	D	lb	lb	I	lb	1				
Mandy	JJ	V	V	IV	V	NS*	IV			
Manor	FF	IVb	IVb		IV	NS*				
Mantachie		lla	lla	I	II	NS*	I			

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Manteo	JJ	V	V	IV	V	NS*	IV			
Marbie	W	IVa	IVa	IV		NS*	IV			
Marbleyard	FF	IVb	IVb	III	IV	NS*	III			
Margo	А	la	la	I	la	I	I			
Markes	NN	V	V	V	V	NS*	NS*			
Marlboro	R	Illa	Illa	II	II		II			
Marr	Т	IIIb	IIIb	II	II	NS*	III			
Marrowbone	JJ	V	V	IV	V	NS*	NS*			
Marumsco	K	llb	llb	I	II		I			
Masada	L	llb	llb	I	II		II			
Massanetta	В	la	la	I	la	II	I			
Massanutten	JJ	V	V	IV	V	NS*	IV			
Matapeake	R	Illa	Illa	11	II		II			
Matewan	FF	IVb	IVb		IV	NS*				
Matewan	FF	IVb	IVb		IV	NS*				
Matneflat	CC	IVb	IVb	11	IV	NS*				
Matneflat	CC	IVb	IVb		IV	NS*				
Mattamuskeet	PP	V	V	V	V	NS*	NS*			
Mattan	PP	V	V	V	V	NS*	NS*			
Mattapeake	В	la	la		la					
Mattapex	K	llb	llb							
Mattaponi	R	Illa	Illa							
Maurertown	NN	V	V	V	V	NS*	NS*			
Maury	M	llb	llb			1				
Mayodan	V	IVa	IVa			 				
McCamy	FF	IVb	IVb		IV	NS*				
McClung	M	llb	IIb	1		1				
McGary (drained)	P	llb	llb	ll	II	NS*				
McGary (undrained)	Z	IVa	IVa	IV		NS*	NS*			
McLaurin	DD	IVb	IVb	II	IV	NS*	III			
McQueen	В	la	la	I	la	II	I			
Meadowfield	JJ	V	V	IV	V	NS*	IV			
Meadows	JJ	V	V	IV	V	NS*	IV			
Meadowville	G	lla	lla	I	II	II	I			
Meadowville variant	G	lla	lla	I	II	II	I			
Meckesville	W	IVa	IVa	IV		NS*	IV			
Mecklenburg	V	IVa	IVa							
Mecklenburg variant	V	IVa	IVa	II		III	III			
Meggett (drained)	С	lb	lb	II	lb	NS*	I			
Meggett (undrained)	00	V	V	V	V	NS*	NS*			
Melfa	PP	V	V	V	V	NS*	NS*			

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Melvin	Н	lla	lla		I	NS*	IV			
(drained)										
Melvin	NN	V	V	V	V	NS*	NS*			
(undrained)										
Middleburg	G	lla	lla	I	I	II	I			
Millrock	II	V	V	III	V	NS*	NS*			
Mine Run	II	V	V	III	V	NS*	NS*			
Minnieville	N	llb	llb		II		II			
Mirerock	KK	V	V	V	V	NS*	IV			
Misenheimer	JJ	V	V	IV	V	NS*	IV			
Molena	II	V	V	III	V	NS*	NS*			
Monacan	I	lla	lla		II	NS*	I			
Mongle	Н	lla	lla	III	II	NS*	IV			
Monongahela	W	IVa	IVa	IV	III	NS*	IV			
Montalto	N	llb	llb	<u> </u>		=	II			
Montonia	Х	IVa	IVa				II			
Montresso	D	lb	lb	1	lb	Ι	I			
Montross	Q	Illa	Illa	11		NS*				
Moomaw	W	IVa	IVa	IV	III	NS*	IV			
Morasonville	D	lb	lb	I	lb	Ι	I			
Morven	G	lla	lla	I	II	Ш	I			
Mount Lucas	J	llb	llb	1		NS*	I			
Mt. Rogers	GG	IVb	IVb	IV	IV	NS*				
Muckalee	MM	V	V	V	V	NS*	IV			
Munden	F	lla	lla	1			II			
Murrill	L	llb	llb	1			II			
Muskingum	JJ	V	V	IV	V	NS*	IV			
Myatt (drained)	С	lb	lb	11	lb	NS*	I			
Myatt (undrained)	00	V	V	V	V	NS*	NS*			
Myatt variant (drained)	С	lb	lb	II	lb	NS*	Ι			
Myatt variant (undrained)	00	V	V	V	V	NS*	NS*			
Myersville	D	lb	lb	I	lb	Ι				
Nahunta	Е	lla	lla	1		NS*	II			
Nanford	V	IVa	IVa				III			
Nansemond	F	lla	lla	1	II		II			
Nason	V	IVa	IVa		III		 III			
Nawney	PP	V	V	V	V	NS*	NS*			
Neabsco	BB	IVb	IVb	III	IV	NS*				
Needmore	FF	IVb	IVb		IV	NS*				
Nestoria	JJ	V	V	IV	V	NS*	IV			
Nevarc	HH	IVb	IVb		IV	NS*	IV			
Newark (drained)	H	lla	lla		I	NS*	IV			
Newark (undrained)	NN	V	V	V	V	NS*	NS*			

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Newark variant	Н	lla	lla		II	NS*	IV			
(drained)										
Newark variant	NN	V	V	V	V	NS*	NS*			
(undrained)										
Newbern	JJ	V	V	IV	V	NS*	IV			
Newflat	LL	V	V	V	V	NS*	IV			
Newhan	QQ	V	V	V	V	NS*	NS*			
Newmarc	В	la	la	I	la	1				
Nicelytown	A	la	la		la		I			
Nicholson	BB	IVb	IVb		IV	NS*				
Nickwasi	JJ	V	V	IV	V	NS*	NS*			
Nimmo	E	lla	lla		II	NS*	II			
Nixa	BB	IVb	IVb		IV	NS*				
Nolichucky	0	llb	llb		II		II			
Nolin	А	la	la		la		I			
Nollville	G	lla	lla		I	II	I			
Nomberville	A	la	la	I	la	I	I			
Norfolk	R	Illa	Illa		II		II			
Oak Level	V	IVa	IVa	I	III		III			
Oakhill	FF	IVb	IVb	III	IV	NS*	III			
Oaklet	Y	IVa	IVa	III	III	NS*	III			
Oatlands	FF	IVb	IVb	III	IV	NS*	III			
Occoquan	DD	IVb	IVb		IV	NS*				
Ochlockonee	II	V	V	III	V	NS*	NS*			
Ochlockonee	II	V	V	III	V	NS*	NS*			
variant										
Ocilla	F	lla	lla	I	II		II			
Ogles	CC	IVb	IVb		IV	NS*	III			
Okeetee	LL	V	V	V	V	NS*	IV			
Opequon	JJ	V	V	IV	V	NS*	IV			
Orange	KK	V	V	V	V	NS*	IV			
Orange variant	KK	V	V	V	V	NS*	IV			
Orangeburg	R	Illa	Illa		II					
Orenda	KK	V	V	V	V	NS*	IV			
Oriskany	CC	IVb	IVb		IV	NS*				
Orrville (drained)	С	lb	lb	II	lb	NS*	I			
Orrville (undrained)	00	V	V	V	V	NS*	NS*			
Orrville variant (drained)	С	lb	lb	II	lb	NS*	I			
Orrville variant (undrained)	00	V	V	V	V	NS*	NS*			
Osier	Е	lla	lla	I	II	NS*				
Ostin	=	V	V	III	V	NS*	NS*			
Othello (drained)	C	lb	lb	II	lb	NS*	1			

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Othello	00	V	V	V	V	NS*	NS*			
(undrained)										
Ott	JJ	V	V	IV	V	NS*	NS*			
Pacolet	Х	IVa	IVa	=			II			
Pactolus	EE	IVb	IVb	III	IV	NS*	NS*			
Paddyknob	JJ	V	V	IV	V	NS*	IV			
Pagebrook	Y	IVa	IVa	III	III	NS*				
Pamlico	PP	V	V	V	V	NS*	NS*			
Pamunkey	В	la	la	I	la	II	I			
Pamunkey variant	В	la	la	I	la	II	I			
Panorama	U	IIIb	IIIb		II		II			
Pantego (drained)	C	lb	lb	I	lb	NS*	I			
Pantego (undrained)	00	V	V	V	V	NS*	NS*			
Parker	GG	IVb	IVb	IV	IV	NS*				
Partlow	HH	IVb	IVb		IV	NS*	IV			
Pasquotank (drained)	С	lb	lb	=	lb	NS*	I			
Pasquotank (undrained)	00	V	V	V	V	NS*	NS*			
Peaks	JJ	V	V	IV	V	NS*	IV			
Peawick	HH	IVb	IVb		IV	NS*	IV			
Pecktonville	М	llb	llb	I	II	I	II			
Penhook	Х	IVa	IVa		III		II			
Penn	FF	IVb	IVb		IV	NS*				
Philo (drained)	Н	lla	lla		II	NS*	IV			
Philo (undrained)	NN	V	V	V	V	NS*	NS*			
Philoment	D	lb	lb		lb					
Pigeonroost	N	llb	llb				II			
Pilot Mountain	JJ	V	V	IV	V	NS*	IV			
Pineola	L	llb	llb		II		II			
Pineville	U	IIIb	IIIb		II		II			
Pineywoods	NN	V	V	V	V	NS*	NS*			
Pinkston	JJ	V	V	IV	V	NS*	IV			
Pinoka	JJ	V	V	IV	V	NS*	IV			
Pisgah	M	llb	llb	I						
Plummer	EE	IVb	IVb	III	IV	NS*	NS*			
Pocalla	DD	IVb	IVb		IV	NS*	III			
Pocaty	PP	V	V	V	V	NS*	NS*			
Pocomoke	E	lla	lla	I		NS*	II			
Poindexter	FF	IVb	IVb	III	IV	NS*	III			
Poindexter variant	FF	IVb	IVb	III	IV	NS*	III			
Polawana	PP	V	V	V	V	NS*	NS*			

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Pooler variant	С	lb	lb		lb	NS*	I			
(drained)										
Pooler variant (undrained)	00	V	V	V	V	NS*	NS*			
Pope	А	la	la	l	la	I	I			
Poplimento	М	llb	llb	l	I	I	I			
Porters	FF	IVb	IVb	111	IV	NS*	III			
Portsmouth (drained)	С	lb	lb	I	lb	NS*	I			
Portsmouth (undrained)	00	V	V	V	V	NS*	NS*			
Post	V	IVa	IVa							
Pouncey	LL	V	V	V	V	NS*	IV			
Poynor	GG	IVb	IVb	IV	IV	NS*				
Psamments		V	V		V	NS*	NS*			
Pungo	PP	V	V	V	V	NS*	NS*			
Purcellville	D	lb	lb		lb					
Purdy (drained)	H	lla	lla	III		NS*	IV			
Purdy	NN	V	V	V	V	NS*	NS*			
(undrained)		•	-	-	-					
Quantico	R	Illa	Illa		II					
Rabun	N	llb	IIb				 			
Rains (drained)	С	lb	lb		lb	NS*				
Rains	00	V	V	V	V	NS*	NS*			
(undrained)										
Ramsey	JJ	V	V	IV	V	NS*	IV			
Rapidan	N	llb	llb		II	=				
Rappahanock	PP	V	V	V	V	NS*	NS*			
Raritan	W	IVa	IVa	IV	III	NS*	IV			
Rasalo	Y	IVa	IVa		III	NS*	III			
Rayne	U	IIIb	IIIb	II	I		I			
Readington	W	IVa	IVa	IV	III	NS*	IV			
Reaville	JJ	V	V	IV	V	NS*	IV			
Redbrush	Y	IVa	IVa	III	III	NS*	III			
Remlik	DD	IVb	IVb	I	IV	NS*	III			
Rhodhiss	Х	IVa	IVa		III	=	II			
Rigley	CC	IVb	IVb	_	IV	NS*	III			
Rion	Х	IVa	IVa		III	=	II			
Riverview	G	lla	lla		I					
Rixeville	JJ	V	V	IV	V	NS*	NS*			
Roanoke (drained)	Н	lla	lla	III	II	NS*	IV			
Roanoke (undrained)	NN	V	V	V	V	NS*	NS*			
Robertsville	LL	V	V	V	V	NS*	IV			
Rockbam	X	IVa	IVa	v	, v					
Rohrersville	BB	IVb	IVb	=======================================	IV	NS*				
Ross	A	la	la	1	la	1	1			

			upings ioi	various c	ropping Ca	legunes	
	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture
Rough	JJ	V	V	IV	V	NS*	IV
Rowland	А	la	la		la		
Rumford	DD	IVb	IVb		IV	NS*	
Rushtown	FF	IVb	IVb		IV	NS*	
Ruston	S	Illa	Illa			NS*	
Saffell	DD	IVb	IVb		IV	NS*	
Santuc	G	lla	lla	I		11	
Sassafras	Т	IIIb	IIIb			NS*	
Saunook	L	llb	llb				
Sauratown	CC	IVb	IVb		IV	NS*	
Savannah	BB	IVb	IVb		IV	NS*	
Scatterville	BB	IVb	IVb		IV	NS*	
Schaffenaker		V	V		V	NS*	NS*
Seabrook	EE	IVb	IVb		IV	NS*	NS*
Seagate	EE	IVb	IVb		IV	NS*	NS*
Sedgefield	KK	V	V	V	V	NS*	IV
Sekil	FF	IVb	IVb		IV	NS*	
Seneca	G	lla	lla	 			
Sequatchie	B	la	la		la		
Sequoia	U	IIIb	IIIb		<u> </u>		
Sewell	JJ	V	V	IV	V	NS*	IV
Shelocta	L	llb	llb	1			
Shelocta variant	L	llb	llb		II	III	II
Shenval	0	llb	llb		11		
Sherando	CC	IVb	IVb	I	IV	NS*	
Sheva	KK	V	V	V	V	NS*	IV
Shottower	0	llb	llb	V	U U		
Shouns	G	lla	lla			<u> </u>	
Sindion	B	la	la	I	la	 	
Skeeterville	KK	V	V	V	V	NS*	IV
Slabtown	G	lla	lla	V	II II		
Slagle	ĸ	IIb	Ilb	I			
Snicksville	D	lb	lb	I	lb	 	
Snowdog	BB	IVb	IVb		IV	NS*	
Spears	V	IVa	IVa	 	11		
Mountain	·	iva	iva				
Speedwell	А	la	la		la	1	I
Spessard	CC	IVb	IVb		IV	NS*	
Spivey	FF	IVb	IVb	 	IV	NS*	
Spotsylvania	V	IVa	IVa	 			
Spray	JJ	V	V	IV	V	NS*	IV
Spriggs	JJ	V	V	IV	V	NS*	IV
Springwood	D	lb	lb		lb	1	
Stanton	LL	V	V	V	V	NS*	IV
Starr	G	lla	lla	v I	II II		
Starr-Dyke	0	llb	Ilb	I		<u> </u>	

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Staser	А	la	la	I	la	I	I			
State (ES)	Т	IIIb	IIIb	II	I	NS*				
State (Mainland)	В	la	la	I	la	II	I			
Steinsburg	JJ	V	V	IV	V	NS*	IV			
Stonecoal	JJ	V	V	IV	V	NS*	IV			
Stoneville	X	IVa	IVa							
Stott Knob	Ν	llb	llb			II				
Stough	F	lla	lla							
Straightstone	V	IVa	IVa				III			
Strawfield	X	IVa	IVa		III					
Stumptown	FF	IVb	IVb		IV	NS*				
Suches	A	la	la	1	la		1			
Sudley	D	lb	lb	1	lb		-			
Suffolk	T	IIIb	IIIb			NS*				
Sugarhol	0	llb	IIb							
Sulfaquents	PP	V	V	V	V	 NS*	 NS*			
Summers	GG	IVb	IVb	IV	IV	NS*				
Susquehanna	KK	V	V	V	V	NS*	IV			
Swamp	PP	V	V	V	v	NS*	NS*			
Swampoodle	D	lb	lb	, I	lb					
Sweetapple	FF	IVb	IVb		IV	NS*				
Swimley	M	llb	IIb	1						
Sycoline	KK	V	V	V	V	NS*	IV			
Sylco	JJ	V	V	IV	v	NS*	IV			
Sylvatus	JJ	V	V	IV	v	NS*	IV			
Talladega	JJ	V	V	IV	v	NS*	IV			
Tallapoosa	JJ	V	V	IV	V	NS*	IV			
Tallapoosa	JJ	V	V	IV	v	NS*	IV			
variant	00	v	v	IV	· ·	110				
Tanasee	JJ	V	V	IV	V	NS*	IV			
Tankerville	N	llb	llb	1	I	=				
Tankerville	N	llb	llb							
taxadjunct		110		•						
Tarboro		V	V		V	NS*	NS*			
Tarrus	X	IVa	IVa		, III					
Tate	0	llb	IIb							
Tate variant	0	llb	llb		I					
Tatum	X	IVa	IVa							
Terric Medisaprists	PP	V	V	V	V	NS*	NS*			
Tetotum	K	llb	llb	I	II					
Tetotum variant	K	llb	IIb	I						
Thunder	GG	IVb	IVb	IV	IV	NS*				
Thurmont	L	Ilb	Ilb	I						
Tidal Marsh	PP	V	V	V	V	NS*	" NS*			
Tidal Marsh,	PP	V	V	V	V	NS*	NS*			
high		v	v	v	v					
nign	I		I							

Table 1-1 Soil Productivity Groupings for Various Cropping Categories										
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture			
Tidal Marsh,	PP	V	V	V	V	NS*	NS*			
low										
Tidal Mudflats	PP	V	V	V	V	NS*	NS*			
Tidal Pool	PP	V	V	V	V	NS*	NS*			
Tifton	Q	Illa	Illa	I	II	NS*				
Timberville	G	lla	lla		II	II	I			
Timberville	G	lla	lla	I	II	II	I			
variant										
Tioga	А	la	la		la	<u> </u>	I			
Toccoa		V	V		V	NS*	NS*			
Toddstav	HH	IVb	IVb		IV	NS*	IV			
Tomotley (drained)	С	lb	lb	Π	lb	NS*	I			
Tomotley (undrained)	00	V	V	V	V	NS*	NS*			
Toms	С	lb	lb		lb	NS*	I			
Toqast	V	IVa	IVa							
Torhunta	E	lla	lla	I	II	NS*	II			
Totier	U	IIIb	IIIb		II		II			
Toxaway	CC	IVb	IVb		IV	NS*				
Toxaway (drained)	С	lb	lb	=	lb	NS*	I			
Toxaway (undrained)	00	V	V	V	V	NS*	NS*			
Trappist	U	IIIb	IIIb	II	I		II			
Trego	Ŵ	IVa	IVa	IV		NS*	IV			
Trenholm	KK	V	V	V	V	NS*	IV			
Trimont	FF	IVb	IVb	 	۰ IV	NS*				
Trussell	BB	IVb	IVb		IV	NS*	NS*			
Tuckahoe	A	la	la		la					
Tuckasegee	G	lla	lla		<u> </u>	 				
Tugglesgap	CC	IVb	IVb		IV	NS*	III			
Tumbling	0	llb	IIb	I						
Turbeville	0	llb	llb							
Tusquitee	G	lla	lla	Ι						
Tygart (drained)	Р	llb	llb	=	II	NS*	III			
Tygart (undrained)	Z	IVa	IVa	IV		NS*	NS*			
Uchee	DD	IVb	IVb	II	IV	NS*				
Unison	<u>ی</u> ا	Ilb	Ilb		1V 	 				
Unison variant		llb	IIb							
Vance	Y	IVa	IVa		" 	NS*				
Vandalia		llb	Ilb		II					
Varina	Q	Illa	Illa			NS*				
Vaucluse	Q	Illa	Illa			NS*				
Vaucluse	Q	Illa	Illa			NS*				
Vertrees	M	llb	Ilb	 						

Table 1-1 Soil Productivity Groupings for Various Cropping Categories							
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture
Virgilina	KK	V	V	V	V	NS*	IV
Wadesboro	Х	IVa	IVa	=	III		II
Wagram	DD	IVb	IVb	=	IV	NS*	
Wahee	С	lb	lb		lb	NS*	I
(drained)							
Wahee	00	V	V	V	V	NS*	NS*
(undrained)							
Wakulla		V	V	Ш	V	NS*	NS*
Wallen	JJ	V	V	IV	V	NS*	IV
Walnut	GG	IVb	IVb	IV	IV	NS*	
Wando		V	V	Ш	IV	NS*	
Warminster	Х	IVa	IVa	=			II
Watahala	М	llb	llb	I		I	II
Watauga	V	IVa	IVa	Ш		111	
Wateree	FF	IVb	IVb	Ш	IV	NS*	
Watt	JJ	V	V	IV	V	NS*	IV
Watt variant	JJ	V	V	IV	V	NS*	IV
Waxpool	LL	V	V	V	V	NS*	IV
Waynesboro	L	llb	llb	Ι	I	111	I
Weaver	А	la	la	Ι	la	I	I
Webbtown	JJ	V	V	IV	V	NS*	IV
Wedowee	V	IVa	IVa	Ш		111	
Weeksville (drained)	С	lb	lb	II	lb	NS*	I
Weeksville (undrained)	00	V	V	V	V	NS*	NS*
Wehadkee	MM	V	V	V	V	NS*	IV
Weikert	JJ	V	V	IV	V	NS*	IV
Westfield	V	IVa	IVa		IV		
Westmoreland	U	IIIb	IIIb		II	111	II
Weston	E	lla	lla		II	NS*	II
Westphalia	I	V	V	=	V	NS*	NS*
Weverton	GG	IVb	IVb	IV	IV	NS*	III
Wharton	М	llb	llb	I	II		II
Wheeling	Α	la	la	I	la		
White Store	KK	V	V	V	V	NS*	IV
White Store variant	KK	V	V	V	V	NS*	IV
Whiteford	U	IIIb	IIIb		II		II
Wickham	B	la	la		la la		
Wickham variant	B	la	la	I	la	II	i I
Widget	CC	IVb	IVb	II	IV	NS*	
Wilkes	JJ	V	V	IV	V	NS*	IV
Wingina	A	la v	la V		v la		IV I
Winnsboro	KK	V	V	I V	V Ia	NS*	I IV
Wintergreen	0	 IIb	llb	V I	V II	 	IV II
	B	lib la		1	li la	<u> </u>	
Winton	D	Id	la	I	id	11	

Table 1-1 Soil Productivity Groupings for Various Cropping Categories							
Soil Series	Soil Mgt Group	Corn	Grain Sorghum	Small Grain	Soybeans	Alfalfa	Tall Grass, Clover, Hay, Pasture
Wolfgap	А	la	la	-	la	_	I
Wolftrap	K	llb	llb	Ι	II	111	I
Woodington	EE	IVb	IVb	111	IV	NS*	NS*
Woodstown	J	llb	llb	Ι	II	NS*	I
Woolvine	V	IVa	IVa	Ш		111	
Woolwine	V	IVa	IVa	Ш		111	
Worsham	HH	IVb	IVb	=	IV	NS*	IV
Worsham variant	HH	IVb	IVb	=	IV	NS*	IV
Wrightsboro	J	llb	llb	I	II	NS*	I
Wurno	JJ	V	V	IV	V	NS*	IV
Wyrick	G	lla	lla	I	II	II	I
Yadkin	Х	IVa	IVa				II
Yellowbottom	V	IVa	IVa	I	III	111	
Yemasse (drained)	С	lb	lb	I	dl	NS*	Ι
Yemasse (undrained)	00	V	V	V	V	NS*	NS*
Yeopim	K	llb	llb	I	I		I
Yogaville	MM	V	V	V	V	NS*	IV
York	BB	IVb	IVb	III	IV	NS*	
Zepp	JJ	V	V	IV	V	NS*	IV
Zion	Y	IVa	IVa	=		NS*	
Zion variant	Y	IVa	IVa	=		NS*	
Zoar	K	llb	llb		II		

Table 1-2Estimated Yields in Bushels (Bu) or Tons (T) per Acre (A) of VariousNon-Irrigated Crops for Identified Soil Productivity Groups

		I		I	I	11	Γ	v	v
Сгор	а	b	а	b	а	b	а	b	
Corn Grain (Bu/A) Silage (T/A) ¹	180 25	170 24	160 23	150 22	140 21	130 20	120 19	100 18	80 16
Grain Sorghum (Bu/A)	140	130	120	110	1(00	ç	00	80
Soybeans (Bu/A) Early season Late season ²	50 40	45 34	4 34	0 30		85 25		25 8	20 15
Wheat (Bu/A) Standard Intensive	-	64 60		6 70		18 60		10 50	24 30
Barley (Bu/A) Standard Intensive		00 15		70 88		60 75		50 53	30 38
Oats	8	0	8	80	8	80	6	60	60
Cereal Silage (T/A) Barley/Oats/Rye Wheat/Triticale		10 12		10 -12		-8 10		-6 -8	<3 <4
Tallgrass Hay (T/A)	>4	4.0	3.5	-4.0	3.0	-3.5	<	3.0	<3.0
Bermudagrass Hay (T/A)	>6	6.0	5.0	-6.0	4.0	-5.0	3.0	-4.0	<3
Prairie Grass Hay (T/A)	>	5	4.2	5-5	3.5-	4.25	3-:	3.5	<3
Alfalfa (T/A)	>6	6.0	4.0	-6.0	<4	4.0	<	:4	<4
Pasture (Ac/AU)	1	.0	1.1	-1.5	1.6	-3.0		3.1-6.5	5

1. When using documented farmer records, corn silage yield may be calculated using the following formula:

Corn Grain Yield (bu/ac) X 0.0985 + 7.6964 = <u>Corn Silage Yield</u> Tons/ac.

2. Late season beans would be planted on or after 6/21 of that year.

Table 1-3 Utilizing Erosion/Slope Information

Soil mapping units provide information on severity of erosion as well as slope yield information. If multiple yield reductions occur in a field, for example, a soil with severe erosion (25% yield reduction) on a class D slope in the ridge and valley physiographic region (20% yield reduction), the single most limiting reduction would be used (25%) as opposed to an additive factor (45%).

1. Yield Adjustment According to Erosion:

Erosion Classes	<u>% Yield Reduction</u>
slight and moderate (1 and 2)	0
severe (3)	25

2. Yield Adjustment According to Slope:

Slope	% Slope Coastal	% Slope Piedmont,	% Yield R Row C and H	rops	% Increase in
Classes	Plain	Mountain Regions	Conv.till	No till	Acres/Animal Unit**
A	0-2	0-2	8	8	<u> </u>
В	2-6	2-7	R	8	8
С	6-10	7-15	6	0	8
D	10-15	15-25	20	10	25
E	15-25	25-45	too steep f	for tillage	50
F	25+	45+	too steep f	for tillage	50

- * A and B are equal and are the class standard.
- ** A, B and C are equal and are the class standard.
- *** Use No-till reduction for established hay.
- **3.** Yield Adjustment According to Coarse Fragments: Exclude group GG since coarse fragments are part of its series criteria:
 - a. Fine gravelly, gravelly (gritty), cherty 10% yield reduction
 - b. Cobbly, angular cobbly, channery, flaggy, slaty, shaly 15% yield reduction
 - c. Very gravelly, extremely gravelly, very cherty 20% yield reduction
 - d. Very cobbly, extremely cobbly, very channery, very flaggy 25% yield reduction

4. Yield Adjustment According to Rock Outcrop:

- a. Rocky No yield reduction; subtract 10% of land area from field acreage to account for rock outcrop area
- b. Bouldery, very bouldery, very rocky, stony, very stony 25% yield reduction for pasture, not suited to row crops
- c. Extremely bouldery, extremely rocky, extremely stony (rubbly) and all complexes with rock outcrop 50% yield reduction for pasture, not suited to row crops
- d. Karst no row crops, extreme caution in use of fertilizers or organic nutrient sources.

Section I.A. Nitrogen Timing Criteria for Various Materials Based on Environmental Sensitivity of Sites

This criteria is to be used to interpret Table 1-4:

1. Timing of Organic Nutrient Sources (manures and biosolids materials)

- a. High environmental risk soils (H) for nitrogen loss apply no more than 30 days prior to planting crop at any time of the year.
- b. Moderate (M) and Low (L) risk soils for nitrogen loss apply no more than 60 days prior to planting spring crops only if the following conditions are met: (1) the site is not environmentally sensitive; and (2) the site has at least 60% uniform ground cover from an existing actively growing crop such as a small grain trap crop or fescue with an exposed plant height of three inches or more. If either of the above conditions cannot be met, apply material no more than 30 days before planting spring crops. Apply material no more that 30 days before timely planting of fall or summer seeded crops.

2. Timing of Inorganic Nitrogen Sources (commercial nitrogen fertilizers)

- a. High environmental risk soils for nitrogen loss must apply inorganic nitrogen in split applications if 50% or more of the crop nutrient needs for nitrogen are applied as inorganic fertilizers
- b. Moderate environmental risk soils for nitrogen loss should apply nitrogen in split applications
- c. Low environmental risk soils for nitrogen loss if split applications are not possible, may apply all nitrogen as close to planting as possible for spring planted annual row crops. Applications shall not be made more than 30 days before crop planting.

Split applications of nitrogen on corn when commercial fertilizer is used to supply 50% or more of the crop nutrient needs for nitrogen, refers to a nitrogen management program where a portion of the nitrogen needs is applied as a sidedress application. On soils with a High nitrogen loss risk, at least 50% of the inorganic nitrogen applications shall be applied as a sidedress application. On Moderate and Low nitrogen loss risk soils this management method is preferred, but not required. The combination of row starter, at planting nitrogen applications and sidedress applications cannot exceed the nitrogen need listed for that crop in that field.

A detailed nitrogen management program for small grain is outlined in Section V. For soils that are high environmental risk soils for nitrogen loss, split spring nitrogen applications shall be recommended as outlined in that program.

For other crops, if no specific program is otherwise defined in the crop specific recommendations or table footnotes in Section 5, split applications of nitrogen are recommended as the preferred method to maximize nitrogen use by the crop.

3. Timing of High Carbon/Nitrogen Ratio Compost (with a final C:N ratio of >25:1)

a. If the composted organic nutrient sources are applied greater than 30 days prior to crop planting on sites with less than 60% crop residue cover, the plan shall require chisel plowing or ridge tilling within 48 hours of application of the composted organic nutrient source. If ridge tilling or chisel plowing is utilized, the equipment should be operated predominately along the contour so that uniform parallel ridges are created that will improve soil roughness and reduce runoff potential until any finishing tillage operations are performed close to the time of crop planting.

b. The planner shall recommend soil nitrate testing to determine nitrogen application rates during the growing season following the application of composted organic nutrient sources if row crops are grown.

Section I.B. Explanation of Environmentally Sensitive Sites

The regulations define "environmentally sensitive site" to mean any field which is particularly susceptible to nutrient loss to groundwater or surface water since it contains or drains to areas which contain sinkholes; or where at least 33% of the area in a specific field contains one or any combination of the following features:

- 1. Soils with high potential for leaching based on soil texture or excessive drainage;
- 2. Shallow soils less than 41 inches deep likely to be located over fractured or limestone bedrock;
- 3. Subsurface tile drains;
- 4. Soil with high potential for subsurface lateral flow based on soil texture and poor drainage;
- 5. Floodplains as identified by soils prone to frequent flooding in county soil surveys; or
- 6. Lands with slopes greater than 15%.

Table 1-4 contains environmental risk ratings for Virginia soils for the first four criteria listed above. Determine the percentage of field area for soils listed as H (high) for Environmental Sensitivity Rating in Table 1-4 plus any field areas that meet criteria 5 or 6 above to determine if the field is an environmentally sensitive site.

The primary reason for the environmental sensitivity rating for each soil listed as high or moderate risk in Table 1-4 is identified by the following key:

- Leaching Soils with potential for leaching based on soil texture or excessive drainage
- Shallow Shallow soils less than 41 inches deep likely to be located over fractured or limestone bedrock
- **Drainage** Soils with subsurface tile drains or with high potential for subsurface lateral flow based on soil texture and poor drainage

The category rating should be used to develop nitrogen application programs to address this concern through rate and timing recommendations.

Table 1-4 that follows lists the environmental sensitivity rating and category for each soil in Virginia.

Soil Series	Environmental Sensitivity	Category
Abell	L	
Ackwater	L	
Acredale,	Н	Drainage
drained		J
Acredale,	L	
undrained		
Aden	L	
Aden	L	
Airmont	L	
Alaga	Н	Leaching
Alamance	Н	Leaching
Alanthus	M	Leaching
Albano	L	g
Albemarle	M	Leaching
Alderflats	L	
Aldino	L –	
Allegheny	н	Shallow
Alonemill	Н	Leaching
Alonzville	M	Leaching
Altavista	1	Louoning
Altavista		
variant	–	
Alticrest	Н	Shallow
Angie	1	Chanon
Appling		
Appling gritty	L	
Appomattox		
Aqualfs		
Aquents	 H	Drainage
Aquic	1	Drainago
Udifluvents	-	
Aquults	L	
Arapahoe	 H	Drainage
Arcola	M	Leaching
Ardilla	L	g
Argent		
Arkaqua		
Ashburn		
Ashe	H	Leaching
Ashlar	Н	Leaching
Assateague	H	Leaching
Athol		Loadining
Atkins	H	Drainage
Atlee		Dramaye
Augusta variant		
Augusta vanant Augusta,	L H	Drainage
drained		Dramaye
Augusta,		<u> </u>
undrained	L L	
Aura	Н	Leaching
Αυία	11	Leathing

Coll Corios	Environmental	Cotomorry
Soil Series	Sensitivity	Category
Austinville		Drainara
Axis	Н	Drainage
Aycock	L	L him n
Ayersville	M	Leaching
Backbay	Н	Drainage
Badin	L	D .
Baile	Н	Drainage
Bailegap	M	Leaching
Balsam	Н	Shallow
Bama	M	Leaching
Banister	L	
Barclay	M	Leaching
Batteau	L	
Batteau	L	
Beckham	L	
Bedington	M	Leaching
Beech	L	
Beech Grove	Н	Shallow
Belhaven	Н	Drainage
Bellspur	M	Leaching
Beltsville	L	
Belvoir	L	
Benthole	Н	Leaching
Bentley	L	
Berks	Н	Shallow
Berks variant	Н	Shallow
Bermudian	М	Leaching
Berthera	L	
Bertie	L	
Bethera	L	
Bethesda	Н	Leaching
Bethlehem	Н	Shallow
Bibb	Н	Drainage
Biltmore	Н	Leaching
Birdsboro	L	g
Blackthorn	L	
Bladen		
Blago	L	
Blairton	H	Shallow
Bland	Н	Shallow
Blocktown	Н	Shallow
Bloodyhorse	Н	Leaching
Bluemont	M	Shallow
Bluemount	M	Leaching
Bohicket		Leaching
Bojac, Eastern	L H	Leaching
Shore		Leaching

Soil Series	Environmental Sensitivity	Category
Bojac,	H	Leaching
mainland		Leadining
Bolling	L	
Bolling variant	L	
Bolton	M	Leaching
Bonneau	H	Leaching
Bookwood	H	Shallow
Botetourt	L	Shallow
Bourne	L	
Bourne variant	L	
Bowmansville	H	Drainage
Braddock	L	Dialitage
Brandywine	H	Leaching
Brecknock	M	
	H	Leaching Leaching
Bremo Brentsville	<u>н</u> Н	Shallow
	<u>н</u> М	
Brevard	L	Leaching
Brickhaven	L L	
Brikerton Brinklow		Leaching
_	M	Leaching
Broadway	L L	
Brockroad		Challaur
Brownsville	Н	Shallow
Brownwood	H	Leaching
Brumbaugh	L	Ohallaus
Brushy	H	Shallow
Buchanan	L	
Buckhall	L	
Buckingham	L	
Bucks	M	Leaching
Buckton	L	
Buffstat	L	<u>.</u>
Bugley	H	Shallow
Buncombe	H	Leaching
Burketown	L	
Burrowsville	L	
Burton	Н	Shallow
Buzzrock	H	Shallow
Cahaba	L	
Calverton	L	
Calvin	Н	Shallow
Camocca	Н	Drainage
Caneyville	Н	Shallow
Captina	L	
Carbo	Н	Shallow
Carbo	Н	Shallow
Carbonton	L	
Cardiff	Н	Leaching
Cardova	М	Leaching
Caroline	L	

Soil Series	Environmental Sensitivity	Category
Cartecay	Н	Leaching
Carteret	Н	Drainage
Cataska	Н	Shallow
Catharpin	L	
Catlett	Н	Shallow
Catoctin	Н	Shallow
Catpoint	Н	Leaching
Caverns	Н	Leaching
Cecil	L	Ŭ.
Cedarcreek	Н	Shallow
Chagrin	М	Leaching
Chagrin variant	Н	Leaching
Chandler	Н	Leaching
Chapanoke	L	<u> </u>
Charity	L	
Chastain	L	
Chastaina	L	
Chatuge	H	Drainage
Chavies	Н	Leaching
Chavies variant	Н	Leaching
Check	Н	Drainage
Chenneby	L	ge
Chesapeake	M	Leaching
Chester	M	Leaching
Chestnut	H	Leaching
Chewacla	L	Louorning
Chickahominy		
Chilhowie	 H	Shallow
Chincoteague	Н	Drainage
Chipley	1	Drainago
Chiswell	 H	Shallow
Christian	1	Chanon
Cid	<u>_</u>	
Claiborne	M	Leaching
Clapham	1	Louoining
Clarksburg		
Clearbrook	H	Shallow
Cliffield	H	Leaching
Clifford		Louoning
Clifton		
Clover	L	╂─────┤
Cloverlick	H	Leaching
Clubcaf		Leading
Clymer	M	Leaching
Codorus	L	Leaching
Codorus		
	L L	
variant	1	
Colescreek	L	├
Colfax Colfax variant		
Colfax variant	L L	

	Environmental	
Soil Series	Sensitivity	Category
Colleen	L	
Colvard	Н	Leaching
Combs	М	Leaching
Comus	M	Leaching
Conetoe	Н	Leaching
Congaree	L	
Coosaw	L	
Cordorus	L	
Corolla	L	
Corydon	Н	Shallow
Cotaco	L	
Cottonbend	М	Leaching
Coursey	L	Ŭ
Cowee	Н	Shallow
Coxville	L	
Craggey	 H	Shallow
Craigsville	H	Leaching
Craven	L	Louorning
Creedmoor		
variant		
Croton	L	
Cullasaja	H	Leaching
Cullen		Leaching
Culleoka	M	Loophing
	IVI	Leaching
Culpeper Daleville	L H	Drainaga
		Drainage
Dan River	M	Leaching
Dandridge	H	Shallow
Danripple	L	
Davidson	L	D .
Dawhoo variant	H	Drainage
Decatur	L	
Dekalb	Н	Leaching
Delanco	L	
Delila	L	
Dellwood	L	
Deloss, drained	Н	Drainage
Deloss,	Н	Drainage
undrained		
Derroc	Н	Leaching
Devotion	Н	Leaching
Diana Mills	L	
Dillard	L	
Dillsboro	L	
Dismal	Н	Drainage
Dogue	L	
Dorovan	Н	Drainage
Dothan	M	Leaching
Downer	H	Leaching
Dragston	L	
Drall	H	Leaching
2701		Louoning

	Environmental	0-1
Soil Series	Sensitivity	Category
Draper	M	Leaching
Drapermill	M	Leaching
Drypond	Н	Shallow
Duckston	Н	Drainage
Duffield	M	Leaching
Dulles	L	
Dumfries	M	Leaching
Dunbar	L	
Dunning	L	
Dunning	L	
Duplin	L	
Durham	M	Leaching
Dyke	L	
Dystrochrepts	Н	Leaching
Easthamlet	L	
Ebbing	L	
Edgehill	L	
Edgehill variant	L	
Edgemont	М	Leaching
Edneytown	М	Leaching
Edneyville	Н	Leaching
Edom	L	<u> </u>
Elbert	L	
Elbert variant	L	
Elioak		
Elk		
Elkton, drained	H	Drainage
Elkton,	1	Drainago
undrained	_	
Elliber	Н	Leaching
Elsinboro	M	Leaching
Emory	L	Louoining
Emporia	M	Leaching
Endcav		Leaching
Enon		
Enott		
Ernest		
Escatawba	M	Looching
Eubanks	M	Leaching
Eulonia		Leaching
Eunola		
Evansham	L	Leasting
Evard	M	Leaching
Evesboro	Н	Shallow
Exum		
Faceville	L L	
Fairfax		
Fairpoint	Н	Shallow
Fairview	L	
Fairystone	L	
Fallsington	Н	Drainage

	Environmental	
Soil Series	Sensitivity	Category
Fauq	L	
Fauquier	L	
Faywood	Н	Shallow
Featherstone	Н	Drainage
Fedscreek	Н	Leaching
Feedstone	L	
Fisherman	L	
Fiveblock	Н	Leaching
Flatwoods	L	-
Fletcher	L	
Flume	L	
Fluvanna	L	
Fluvaquents	H	Drainage
Fluvaquents,	1	Drainago
ponded	-	
Fluvaquents,	Н	Drainage
saline		Dramage
Forestdale	1	
Fork		
Fork variant		
		Loophing
Frankstown	M	Leaching
Frederick	L	
Freemanville	L	
French	L	
Fresh water	Н	Drainage
swamp		
Fripp	Н	Leaching
Funkstown	L	
Gaila	M	Leaching
Gainesboro	Н	Shallow
Galestown	Н	Leaching
Galtsmill	Н	Leaching
Georgeville	L	
Germanna	L	
Gertie	L	
Gilpin	Н	Shallow
Gladehill	Н	Leaching
Glenelg	М	Leaching
Glenelg, Blue	М	Leaching
Ridge		Ŭ
Glenelg, New	М	Leaching
River Valley		Ŭ Ŭ
Glenville	L	
Glynwood	L	
Goblintown	L	
Goldsboro		
Goldston	H	Leaching
Goldvein	1	Leadining
Goresville		
Granville		
Grassland	L L	

	Environmental		
Soil Series	Sensitivity	Category	
Greendale			
Greenlee	Н	Leaching	
Griffinsburg	Н	Shallow	
Grigsby	Н	Leaching	
Grimsley	Н	Leaching	
Gritney	L		
Groseclose	L		
Grover	М	Leaching	
Gullion	L		
Gundy	L		
Gunstock	Н	Shallow	
Guyan	L		
Gwinnett	L		
variant			
Hagerstown	L		
Halewood	L		
Halifax	L		
Hanceville	L		
Haplaquepts	Н	Leaching	
Happyland	M	Leaching	
Hartleton	Н	Shallow	
Hartsells	М	Shallow	
Hatboro	Н	Drainage	
Hawksbill	Н	Leaching	
Hayesville	L	Ŭ	
Haymarket	L		
Hayter	М	Leaching	
Haywood	Н	Leaching	
Hazel	Н	Shallow	
Hazel	Н	Shallow	
(channery)			
Hazel Run	М	Leaching	
Hazleton	Н	Shallow	
Helena	L		
Herndon	L		
Hibler	L		
Hickoryknob	M	Leaching	
Highsplint	H	Leaching	
Hiwassee	L	Louoining	
Hoadly	L		
Hobucken	H H	Drainage	
Holly	H	Drainage	
Hollywood		Diamaye	
Hubersburg			
Huntington			
Hyde, drained	H	Drainage	
Hyde, drained Hyde,	<u> </u>	Drainage	
undrained			
Hydraquents			
· · ·	H Draina M Leach		
Ingledove lotla		Leaching	
ισιια			

	Environmental		
Soil Series	Sensitivity	Category	
Iredell			
Irongate	H	Leaching	
Itmann	H	Shallow	
luka	L		
Izagora	L		
Jackland	L		
Jedburg	L		
Jefferson	M	Leaching	
Jefferson	Н	Leaching	
variant		. .	
Johns, drained	H	Drainage	
Johns,	L		
undrained			
Johnston	Н	Drainage	
Junaluska	Н	Shallow	
Kalmia	М	Leaching	
Kaymine	Н	Shallow	
Keener	М	Leaching	
Kelly	L		
Kempsville	M	Leaching	
Kenansville	Н	Leaching	
Kenansville	L		
variant			
Keyport	L		
Kibler	М	Leaching	
Kinkora	L		
Kinkora	L		
Kinston	Н	Drainage	
Klej	Н	Drainage	
Klinesville	Н	Shallow	
Konnarock	Н	Shallow	
Lackstown	L		
Laidig	М	Leaching	
Lakehurst	L		
variant			
Lakeland	Н	Leaching	
Lakin	Н	Leaching	
Landsiburg	L		
Lanexa	Н	Drainage	
Lanside	Н	Shallow	
LaRoque	М	Leaching	
Lawnes	Н	Drainage	
Leaf	L		
Leaf	L		
Leaksville	L		
Leck Kill	М	Leaching	
Leedsville	М	Leaching	
Leetonia	H Shal		
Legore	M Leach		
Lehew	H Shall		
Lenoir	L		

Soil Series	Environmental Sensitivity	Category
Leon	Н	Drainage
Levy	Н	Drainage
Lew	Н	Leaching
Lewisberry	Н	Leaching
Library	L	Ŭ
Lignum	L	
Lily	Н	Shallow
Lindside	L	
Littlejoe	L	
Litz	Н	Shallow
Lloyd	L	
Lloyd variant	L	
Lobdell	L	
Lodi		
Lostcove	H	Leaching
Louisa	H	Leaching
Louisa variant	Н	Leaching
Louisburg	Н	Leaching
Louisburg,	Н	Leaching
hapludalfs		Leaching
Lowell	1	
Lucketts	<u>L</u>	
Lucy	H	Leaching
Lumbee	H	Drainage
Lumbee variant	H	Drainage
Lunt		Dialilaye
Lynchburg Macove	L H	Loophing
Madison		Leaching
	L H	Shallow
Madsheep Magotha	H H	
Magotha Manassas		Drainage
		Challow
Mandy	Н	Shallow
Manor	H	Leaching
Mantachie	L	Ohallaus
Manteo	H	Shallow
Marbie	L	
Marbleyard	H	Leaching
Margo		<u> </u>
Markes	H	Drainage
Marlboro		
Marr	M	Leaching
Marrowbone	H	Shallow
Masada	L	
Massanetta	L	
Massanutten	H Shal	
Matapeake	L	
Matewan	H Leach	
Matneflat	H Leach	
Mattamuskeet	Н	Drainage
Mattan	Н	Drainage

Soil Series	Environmental Sensitivity	Category	
Mattapex		outogoly	
Mattaponi			
Maurertown			
Maury			
Mayodan			
McCamy	L M	Loophing	
		Leaching	
McClung	M	Leaching	
McGary	L		
McGary	L		
McLaurin	H	Leaching	
McQueen	L	01 11	
Meadowfield	Н	Shallow	
Meadows	Н	Shallow	
Meadowville	M	Leaching	
Meckesville	L		
Mecklenburg	L		
Mecklenburg	L		
variant			
Meggett	L		
Melfa	Н	Drainage	
Melvin, drained	Н	Drainage	
Melvin,	L		
undrained			
Middleburg	М	Leaching	
Millrock	Н	Leaching	
Mine Run	Н	Leaching	
Minnieville	L		
Mirerock	L		
Misenheimer	Н	Shallow	
Mixed alluvium,	Н	Drainage	
poorly drained		5	
Mixed alluvium,	L		
well drained			
Molena	Н	Leaching	
Monacan	L	Ŭ	
Mongle	L		
Monongahela	L		
Montalto	L		
Montonia	M	Leaching	
Montross	L	g	
Moomaw	L		
Morven	M	Leaching	
Mount Lucas	L	Louoning	
Mt Rogers	H	Leaching	
Muckalee	H H	Leaching Drainage	
	<u> </u>	-	
Munden		Leaching	
Murrill	M	Leaching	
Muskingum	H	Shallow	
Myatt	Н	Drainage	
Myatt variant	Н	Drainage	
Myersville	М	Leaching	

Soil SeriesSensitivityCategoryNahuntaLNanfordLNanfordLNansemondMLeachingNasonLNathalieLNathalieLNawneyHDrainageNeabscoLNeedmoreMShallowNestoriaHShallowNevarcLNewark, andLNewark, andLNewark, andLNewark, LLUndrainedNewbernNewbernHShallowNewflatLNicolytownLNicholsonLNikwasiHDrainageNixaLNolichuckyMLeachingNolinLNolichuckyMLeachingOakletLOakhillHLeachingOakletLOchockoneeLVariantOchockoneeOchoraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHOrangeLOrengeLOrengeLOpequonHShallowOrangeLOrangeLOrangeLOrangeLOrangeLOrangeLOrangeLOrangeL		Environmental	
NanfordLNansemondMLeachingNasonLNathalieLNawneyHDrainageNeabscoLNeedmoreMShallowNestoriaHShallowNevarcLNewark variantLNewark,HDrainagedrainedNewark,Newark,LundrainedNewark,NewflatLNewhanHLeachingNewbernHNicholsonLNicholsonLNikwasiHDrainageNixaLNolichuckyMLeachingNolinLNolinLNorfolkMLeachingOakletLOakletLOchlockoneeHLeachingOchlockoneeLVariantDrainageOchlockoneeLVariantDrainageOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlockoneeLOchlaLOchlaL <tr< th=""><th></th><th>Sensitivity</th><th>Category</th></tr<>		Sensitivity	Category
NansemondMLeachingNasonL		L	
NasonLNathalieLNawneyHDrainageNeabscoLNeedmoreMShallowNestoriaHShallowNevarcLNewark variantLNewark,HDrainagedrainedImageNewark,LundrainedNewbernHShallowNewflatLNewhanHLeachingNewmarcLNicolytownLNicolsonLNikwasiHDrainageNixaLNolichuckyMLeachingNolinLNorfolkMLeachingOak LevelLOakletLQakletLOchlockoneeHLeachingOchlockoneeLVariantImageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DHDrainageOkeeteeLOpequonHShallowOrangeL		L	
NathalieLNawneyHDrainageNeabscoLNeedmoreMShallowNestoriaHShallowNevarcLNewark variantLNewark,HDrainagedrainedNewark,LundrainedNewark,LNewark,LundrainedNeweflatLNewhanHLeachingNewmarcLNicolytownLNicolsonLNikwasiHDrainageNixaLNolichuckyMLeachingNolinLNorfolkMLeachingOak LevelLOakhillHLeachingOchlockoneeLvariantOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DHDrainageOkeeteeLOpequonHShallowOrangeL		M	Leaching
NawneyHDrainageNeabscoLNeedmoreMShallowNestoriaHShallowNevarcLNewark variantLNewark,HDrainagedrainedDrainageNewark,LundrainedImageNewhark,LNewbernHShallowNewflatLNewhanHLeachingNewmarcLNicholsonLNikwasiHDrainageNixaLNolichuckyMLeachingNolinLNolininLNorfolkMLeachingOakletLOakhillHLeachingOchlockoneeHLeachingOchlockoneeLvariantOchlockoneeOchrepts, A/DHDrainageOchrepts, DLOcillaLOglesHLeachingOkeeteeLOpequonHShallowOrangeL		L	
NeabscoLNeedmoreMShallowNestoriaHShallowNevarcLImageNewark variantLImageNewark,HDrainagedrainedImageImageNewark,LImageundrainedImageImageNewflatLImageNewflatLImageNewflatLImageNicelytownLImageNicholsonLImageNikwasiHDrainageNimmoHDrainageNixaLImageNolinLImageNolinLImageNorfolkMLeachingOakletLImageOakletLImageOchlockoneeHLeachingOchlockoneeLImageOchlockoneeLImageOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLImageOchrepts, DLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeetee<	Nathalie	L	
NeedmoreMShallowNestoriaHShallowNevarcLImageNewark variantLImageNewark,HDrainagedrainedImageImageNewark,LImageundrainedImageNewbernHShallowNewflatLImageNewflatLImageNewflatLImageNicelytownLImageNicholsonLImageNikwasiHDrainageNixaLImageNolichuckyMLeachingNolinLImageNolinLImageNolinLImageNolinLImageOak LevelLImageOakletLImageOchlockoneeHLeachingOchlockoneeHImageOchlockoneeLImageOchlockoneeLImageOchlockoneeLImageOchlockoneeLImageOchlockoneeLImageOchlockoneeLImageOchrepts, A/DHImalageOchrepts, DLImalageOkeeteeLImalageOkeeteeLImalageOkeeteeLImalageOkeeteeLImalageOkeeteeLImalageOkeeteeLImalageOkeeteeLImalage <td>Nawney</td> <td>Н</td> <td>Drainage</td>	Nawney	Н	Drainage
NestoriaHShallowNevarcLImageNewark variantLNewark, variantLNewark, mediationLNewbernHShallowNewflatLNewflatLNewflatLNewflatLNicelytownLNicholsonLNikwasiHDrainageNimmoHDrainageNixaLNolichuckyMLeachingNolinLNombervilleLNorfolkMLeachingOak LevelLOakletLOchlockoneeHLeachingOchlockoneeLvariantCohlockoneeDorlockoneeLOchlockonee		L	
NevarcLNewark variantLNewark, variantLNewark, indrainedLundrainedImageNewbernHShallowNewflatLNewhanHLeachingNewmarcLNicelytownLNicholsonLNikwasiHDrainageNixaLNolichuckyMLeachingNolinLNorfolkMLeachingOak LevelLOakletLOakletLOchlockoneeHLeachingOchlockoneeLOchlockoneeLVariantMOchlockoneeLVariantDrainageOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLOglesHLeachingOkeeteeLOpequonHShallowOrangeL	Needmore	М	Shallow
Newark variantLNewark, drainedHDrainageNewark, undrainedLImageNewbernHShallowNewflatLImageNewhanHLeachingNewmarcLImageNicelytownLImageNicholsonLImageNikwasiHDrainageNixaLImageNolichuckyMLeachingNolichuckyMLeachingNolinLImageNorfolkMLeachingOak LevelLImageOakletLImageOakletLImageOchlockoneeHLeachingOchlockoneeLImageOchlockoneeLImageOchlockoneeLImageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLImageOchrepts, DLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImag	Nestoria	Н	Shallow
Newark, drainedHDrainageNewark, undrainedLNewbernHShallowNewflatLImageNewhanHLeachingNewmarcLImageNicelytownLImageNicholsonLImageNikwasiHDrainageNixaLImageNolichuckyMLeachingNolinLImageNolinLImageNolinLImageNolichuckyMLeachingOak LevelLImageOakletLImageOakletLImageOchlockoneeHLeachingOchlockoneeHLeachingOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, DLImageOchrepts, DLImageOchrepts, DLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImage <t< td=""><td>Nevarc</td><td>L</td><td></td></t<>	Nevarc	L	
drainedLNewark, undrainedLNewbernHShallowNewflatLImage of the state of t	Newark variant	L	
Newark, undrainedLNewbernHShallowNewflatLImage: Constraint of the state o	Newark,	Н	Drainage
undrainedHShallowNewbernHShallowNewflatLImageNewhanHLeachingNewmarcLImageNicelytownLImageNicholsonLImageNikwasiHDrainageNimmoHDrainageNixaLImageNolichuckyMLeachingNolinLImageNolinLImageNorfolkMLeachingOak LevelLImageOakletLImageOatlandsMLeachingOchlockoneeHLeachingOchlockoneeLImageOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DHDrainageOchrepts, DLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImage<	drained		-
NewbernHShallowNewflatLNewhanHLeachingNewmarcLNicelytownLNicholsonLNikwasiHDrainageNimmoHDrainageNixaLNolichuckyMLeachingNolinLNollvilleLNombervilleLNorfolkMLeachingOak LevelLOatlandsMCcoquanMLeachingOchlockoneeLvariantUOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DHDrainageOkeeteeLOglesHLeachingOkeeteeLOpequonHShallowOrangeL	Newark,	L	
NewflatLNewmanHLeachingNewmarcLImageNicelytownLImageNicholsonLImageNikwasiHDrainageNimmoHDrainageNixaLImageNolichuckyMLeachingNolinLImageNollvilleLImageNorfolkMLeachingOak LevelLImageOakletLImageOakletLImageOchlockoneeHLeachingOchlockoneeLImageOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DHDrainageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeL	undrained		
NewhanHLeachingNewmarcLImageNicelytownLImageNicholsonLImageNikwasiHDrainageNimmoHDrainageNixaLImageNolichuckyMLeachingNolinLImageNollvilleLImageNorfolkMLeachingOak LevelLImageOakhillHLeachingOakletLImageOchlockoneeHLeachingOchlockoneeLImageOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, DLImageOchrepts, DLImageOchrepts, DLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeN <td< td=""><td>Newbern</td><td>Н</td><td>Shallow</td></td<>	Newbern	Н	Shallow
NewmarcLNicelytownLNicholsonLNikwasiHDrainageNimmoHDrainageNixaLNolichuckyMLeachingNolinLNollvilleLNombervilleLNorfolkMLeachingOak LevelLOakhillHLeachingOakletLOatlandsMLeachingOchlockoneeHVariantLeachingOchrepts, A/DHDrainageOchrepts, B/DHOreageLOglesHLeachingOkeeteeLOglesHShallowOrangeL	Newflat	L	
NewmarcLNicelytownLNicholsonLNikwasiHDrainageNimmoHDrainageNixaLNolichuckyMLeachingNolinLNollvilleLNombervilleLNorfolkMLeachingOak LevelLOakhillHLeachingOakletLOatlandsMLeachingOchlockoneeHVariantLeachingOchrepts, A/DHDrainageOchrepts, B/DHOreageLOglesHLeachingOkeeteeLOglesHShallowOrangeL		Н	Leaching
NicelytownLNicholsonLNikwasiHDrainageNimmoHDrainageNixaLNolichuckyMLeachingNolinLNollvilleLNombervilleLNorfolkMLeachingOak LevelLOakletLOakletLOatlandsMLeachingOchlockoneeHVariantLeachingOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLOglesHLeachingOkeeteeLOpequonHShallowOrangeL		L	3
NicholsonLNikwasiHDrainageNimmoHDrainageNixaLImageNolichuckyMLeachingNolinLImageNolinLImageNollvilleLImageNorfolkMLeachingOak LevelLImageOakhillHLeachingOakletLImageOatlandsMLeachingOchlockoneeHLeachingOchlockoneeLImageOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLImageOchrepts, DLImageOchrepts, DLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeNImage <td></td> <td>L</td> <td></td>		L	
NikwasiHDrainageNimmoHDrainageNixaLImageNolichuckyMLeachingNolinLImageNolinLImageNollvilleLImageNorfolkMLeachingOak LevelLImageOakhillHLeachingOakletLImageOatlandsMLeachingOchlockoneeHLeachingOchlockoneeLImageOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLImageOchrepts, DLImageOchrepts, DLImageOchrepts, DLImageOkeeteeLImageOkeeteeLImageOkeeteeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeLImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeNImageOrangeImageImageOrange <td< td=""><td></td><td>L</td><td></td></td<>		L	
NimmoHDrainageNixaLImageNolichuckyMLeachingNolinLImageNolinLImageNollvilleLImageNorfolkMLeachingOak LevelLImageOakhillHLeachingOakletLImageOatlandsMLeachingOccoquanMLeachingOchlockoneeHLeachingOchlockoneeLImageOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLImageOchrepts, DLImageOchrepts, DLImageOkeeteeLImageOkeeteeLImageOpequonHShallowOrangeLImage		H	Drainage
NixaLNolichuckyMLeachingNolinLNolinLNombervilleLNorfolkMLeachingOak LevelLOakhillHLeachingOakletLOatlandsMLeachingOccoquanMLeachingOchlockoneeHLeachingOchlockoneeLVariantOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLOchrepts, DOcillaLUOglesHLeachingOkeeteeLShallowOrangeLU			
NolichuckyMLeachingNolinLImage: Nolini lightImage: Nolini lightNombervilleLImage: NorfolkMLeachingOak LevelLImage: NorfolkImage: NorfolkImage: NorfolkOak LevelLImage: NorfolkImage: NorfolkImage: NorfolkOak LevelLImage: NorfolkImage: NorfolkImage: NorfolkOak LevelLImage: NorfolkImage: NorfolkImage: NorfolkOakletLImage: NorfolkImage: NorfolkImage: NorfolkOatlandsMLeachingImage: NorfolkImage: NorfolkOchlockoneeHLeachingImage: NorfolkImage: NorfolkOchraquultsHDrainageImage: NorfolkImage: NorfolkOchrepts, A/DHDrainageImage: NorfolkImage: NorfolkOchrepts, DLImage: NorfolkImage: NorfolkImage: NorfolkOglesHLeachingImage: NorfolkImage: NorfolkOkeeteeLImage: NorfolkImage: NorfolkImage: NorfolkOpequonHShallowImage: NorfolkImage: NorfolkOrangeLImage: NorfolkImage: Norfolk		1	Drainage
NolinLNolinLNombervilleLNorfolkMLeachingOak LevelLOakhillHLeachingOakletLOatlandsMLeachingOccoquanMLeachingOchlockoneeHVariantOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, DLOcillaLOglesHLeachingOkeeteeLOpequonHShallowOrangeL		M	Leaching
NollvilleLNombervilleLNorfolkMLeachingOak LevelLOakhillHLeachingOakletLOatlandsMLeachingOccoquanMLeachingOchlockoneeHVariantLeachingOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, DLOcillaLOglesHLeachingOkeeteeLOpequonHShallowOrangeL			Leaching
NombervilleLNorfolkMLeachingOak LevelLOakhillHLeachingOakletLOatlandsMLeachingOccoquanMLeachingOchlockoneeHLeachingOchlockoneeLvariantVariantOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, B/DLOglesHLeachingOkeeteeLOpequonHShallowOrangeL		L	
NorfolkMLeachingOak LevelLOakhillHLeachingOakletLOatlandsMLeachingOccoquanMLeachingOchlockoneeHLeachingOchlockoneeLvariantVariantOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLOglesHLeachingOkeeteeLVariangeOchrepts, DLOrillaLOglesHShallowOrangeL		L	
Oak LevelLOakhillHLeachingOakletLOatlandsMLeachingOccoquanMLeachingOccoquanMLeachingOchlockoneeHLeachingOchlockoneeLvariantVariantOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLVarianageOchrepts, DLVarianageOchrepts, DLVarianageOchrepts, DLVarianageOchrepts, DLVarianageOglesHLeachingOkeeteeLVarianageOrangeLVarianage		L	Loophing
OakhillHLeachingOakletLOatlandsMLeachingOccoquanMLeachingOchlockoneeHLeachingOchlockoneeLvariantOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLOcillaLOglesHLeachingOkeeteeLOpequonHShallowOrangeL			Leaching
OakletLOatlandsMOccoquanMDeachingOchlockoneeHDeachingOchlockoneeLvariantVariantOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLOcillaLOglesHLeachingOkeeteeLOpequonHShallowOrangeL			Loophing
OatlandsMLeachingOccoquanMLeachingOchlockoneeHLeachingOchlockoneeLvariantVariantOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLVariantOcillaLVariangeOkeeteeLVariangeOkeeteeLVariangeOkeeteeLVariangeOrangeLVariange			Leaching
OccoquanMLeachingOchlockoneeHLeachingOchlockoneeLvariantLOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLLOcillaLOcillaOkeeteeLOpequonOpequonHShallowOrangeLI			Loophing
OchlockoneeHLeachingOchlockoneeLvariantLOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLOcillaLOglesHDeachingOkeeteeLOpequonHShallowOrangeL			
Ochlockonee variantLOchlockonee variantLOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLOcillaLOglesHLeachingOkeeteeLOpequonHShallowOrangeL			
variantUnitsOchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLUnitsOcillaLUnitsOglesHLeachingOkeeteeLUnitsOpequonHShallowOrangeLUnits			Leaching
OchraquultsHDrainageOchrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLOcillaLOglesHLeachingOkeeteeLOpequonHShallowOrangeL		L	
Ochrepts, A/DHDrainageOchrepts, B/DHDrainageOchrepts, DLOcillaLOglesHLeachingOkeeteeLOpequonHShallowOrangeL			Desires
Ochrepts, B/DHDrainageOchrepts, DLOcillaLOglesHLeachingOkeeteeLOpequonHShallowOrangeL			
Ochrepts, DLOcillaLOglesHLeachingOkeeteeLOpequonHOrangeL	Ochrepts, A/D		-
OcillaLOglesHLeachingOkeeteeLOpequonHShallowOrangeL		H ·	Drainage
OglesHLeachingOkeeteeLOpequonHOrangeL		L L	
OkeeteeLOpequonHOrangeL		<u> </u>	
OpequonHShallowOrangeL		H	Leaching
Orange L		L	
	· · ·	Н	Shallow
Orange variant		L	
	Orange variant	L	
Orangeburg M Leaching		М	Leaching
Orenda L	Orenda	L	
Oriskany H Leaching	Oriskany	Н	Leaching
Orrville L		L	9

	Environmental	Ostanama
Soil Series	Sensitivity	Category
Orrville	L	
Orthents	L	<u> </u>
Osier	Н	Drainage
Ostin	M	Leaching
Othello	L	
Othello	L	
Ott	М	Leaching
Pacolet	L	
Pactolus	L	
Paddyknob	Н	Shallow
Pagebrook	L	
Palms variant	Н	Drainage
Pamlico	Н	Drainage
Pamunkey	М	Leaching
Pamunkey	М	Leaching
Variant		
Pamunkey	Н	Leaching
variant		
Panorama	М	Leaching
Pantego	L	
Parker	Н	Leaching
Partlow	Н	Drainage
Pasquotank	Н	Drainage
Peaks	Н	Shallow
Peawick	L	
Pecktonville	L	
Penhook	L	
Penn	М	Leaching
Philo (Dr.)	М	Leaching
Philomont	Н	Leaching
Pigeonroost	Н	Shallow
Pilot Mountain	Н	Leaching
Pineola	М	Leaching
Pineville	M	Leaching
Pineywoods	L	
Pinkston	 H	Leaching
Pinoka	M	Leaching
Pisgah	L	Louoinig
Plummer	H	Drainage
Pocalla	M	Leaching
Pocaty	H	Drainage
Pocomoke	H	Drainage
Poindexter	M	Leaching
Polawana	H	Drainage
Pooler variant		Drainage
Pooler, drained	H	Drainage
Pope	H	Leaching
Poplimento	H Leach L	
Porters		
	M H	Leaching
Portsmouth, drained		Drainage
ulaineu		

	Environmental	
Soil Series	Sensitivity	Category
Portsmouth, undrained	Н	Drainage
Pouncey	L	
Poynor	H	Leaching
Psamments,	1	Leaching
mod well		
Psamments,	1	
somewhat		
poorly		
Psamments,	Н	Leaching
well drained		
Pungo	Н	Drainage
Purcellville	L	2 rainage
Purdy		
Purdy (drained)	H	Drainage
Quantico	L	
Rabun	L	
Rains, drained	H	Drainage
Rains,	H	Drainage
undrained		Dramago
Ramsey	Н	Shallow
Rapidan	L	Chanon
Rappahannock	H	Drainage
Raritan	L	Drainage
Rasalo	L	
Rayne	M	Leaching
Readington	L	Louoinig
Reaville	L	
Redbrush	L	
Remlik	H	Leaching
Rhodhiss	M	Leaching
Rigley	H	Leaching
Rion	M	Leaching
Riverview	M	Leaching
Rixeyville	Н	Shallow
Roanoke	L	
Roanoke,	H	Drainage
drained		2. all age
Roanoke,	L	
undrained		
Robertsville	L	
Rockbarn	 L	
Rohrersville	 L	
Ross	M	Leaching
Rough	H	Shallow
Rowland	L	
Rumford	H	Leaching
Rushtown	H	Leaching
Ruston	M	Leaching
Saffell	H	Shallow
Santuc	L	
Sassafras	M	Leaching

	Environmental Sensitivity Categor		
Soil Series	Sensitivity	Category	
Saunook	M	Leaching	
Sauratown	M	Leaching	
Savannah	L		
Scattersville	L		
Schaffenaker	Н	Leaching	
Seabrook	L		
Seagate	Н	Drainage	
Sedgefield	L		
Sekil	Н	Leaching	
Seneca	L		
Sequatchie	L		
Sequoia	Н	Shallow	
Sewell	Н	Shallow	
Shelocta	М	Leaching	
Shelocta	L	g	
variant	_		
Shenval	L		
Sherando	H	Leaching	
Sheva	L	Leaoning	
Shottower	L		
Siloam	L		
Sindion	L		
	=		
Skeeterville	L		
Slabtown	L		
Slagle	L		
Snowdog	L		
Spears	L		
Mountain			
Speedwell	M	Leaching	
Spessard	Н	Leaching	
Spivey	Н	Leaching	
Spotsylvania	L		
Spray	М	Leaching	
Spriggs	М	Leaching	
Springwood	L		
Starr	М	Leaching	
Starr Dyke	L		
Stasser	L		
State	М	Leaching	
Statler	М	Leaching	
Steinsburg	H	Leaching	
Stonecoal	H	Shallow	
Stoneville	L		
Stott Knob	M	Leaching	
Stough	L	Locoming	
Straightstone	L		
Strawfield	L		
Stumptown			
Suches	M Leach		
Sudley	M Leach		
Suffolk	М	Leaching	

Soil Series	Environmental	Cotogony	
	Sensitivity	Category	
Sugarhol		Drainaga	
Sulfaquents	<u>п</u> Н	Drainage Shallow	
Summers	H	Shallow	
Susquehanna	L	Desires	
Swamp	H	Drainage	
Swampoodle	L L		
Sweetapple	H	Leaching	
Swimley	L		
Sycoline	L		
Sylco	Н	Shallow	
Sylvatus	Н	Shallow	
Talladega	Н	Shallow	
Tallapoosa	L		
Tallapoosa variant	L		
Tanasee	н	Leaching	
Tankerville	Н	Shallow	
Tarboro	Н	Leaching	
Tarrus		Leaching	
Tate	M	Leaching	
Tatum	101	Leaching	
Terric	L H	Drainage	
		Dialitage	
Haplohemists Tetotum	L		
Tetotum variant	L H	Loophing	
Thunder	M	Leaching	
Thurmont		Leaching	
Tifton Timberville			
Timberville	L L	Loophing	
variant	IVI	Leaching	
	Н	Loophing	
Tioga		Leaching Shallow	
Tipples		Shallow	
Toast Toddstav			
		Drainage	
Tomotley, drained	Н	Drainage	
	Н	Droinogo	
Tomotley,		Drainage	
undrained			
Toms	L	Dusi	
Torhunta	Н	Drainage	
Totier	L		
Toxaway	Н	Drainage	
Trappist	M	Shallow	
Trego	M	Leaching	
Trego	L		
Trenholm	L		
Trimont	M	Leaching	
Trussell	L		
Tuckahoe	М	Leaching	
Tuckasegee	М	Leaching	

Sail Sariaa	Environmental	Catagory
Soil Series	Sensitivity	Category
Tugglesgap		
Tumbling	L	
Turbeville	L	
Tusquitee,	Н	Leaching
coarse loamy		
Tusquitee, fine	Μ	Leaching
loamy		
Tygart	L	
Туріс	н	Drainage
Udorthents		
Uchee	Н	Leaching
Udalfs	Н	Drainage
Udifluvents,	н	Drainage
fine loamy		
Udipsamments,	L	
mod well		
Udipsamments,	L	
well		
Udults, well	Н	Drainage
drained		
Unison	L	
Unison variant	L	
Vance	L	
Vandalla	L	
Varina	L	
Vaucluse	М	Leaching
Vertrees	L	
Virgilina	L	
Wadesboro	L	
Wadesboro	L	
Wagram	М	Leaching
Wahee	L	
Wallen	Н	Shallow
Walnut	Н	Leaching
Wando	Н	Leaching
Warminster	L	
Watahala	М	Leaching
Watauga	М	Leaching
Wateree	Н	Leaching
Watt	Н	Shallow
Watt variant	Н	Shallow
Waxpool	L	
Waynesboro	L	
Weaver	L	
Webbtown	Н	Shallow
Wedowee	L	
Weeksville	H	Drainage
Wehadkee	Н	Drainage
Weikert	Н	Shallow
		Ghanow

	Environmental	
Soil Series	Sensitivity	Category
Weikert, exc	Н	Shallow
drained		
Westfield	L	
Westmoreland	М	Leaching
Weston	Н	Drainage
Westphalia	Н	Leaching
Weverton	H	Leaching
Wharton	L	
Wheeling	M	Leaching
White Store	L	
White Store	L	
variant	NA	Leehing
Whiteford	M	Leaching
Wickham Wickham	M	Leaching Leaching
variant	IVI	Leaching
Widgett	Н	Leaching
Wilkes	L	Leaching
Wingina	M	Leaching
Winnsboro	1	Leaoning
Wintergreen		
Winton	L	
Wolfgap	M	Leaching
Wolftrap	L	<u> </u>
Woodington	Н	Drainage
Woodstown	L	<u> </u>
Woolwine	L	
Worsham	L	
Worsham	L	
variant		
Wrightsboro	L	
Wurno	Н	Shallow
Wyrick	М	Leaching
Yellowbottom	L	
Yemasse,	Н	Drainage
drained		
Yemassee,	L	
undrained		
Yeopim		Droinaga
Yogaville York	H	Drainage
	L H	Looching
Zepp Zion		Leaching
Zion Zion variant		
Zoar		
20ai	L L	

Section I.C. Recommended Setback Areas

In addition to other management practices discussed in this section, animal waste or biosolids shall not be applied within the following setback areas around the specific features listed. Select the category which applies to the plan you are writing. Plans written as part of Virginia Pollution Abatement (VPA) permits and Virginia Pollutant Discharge Elimination System (VPDES) permits which also are receiving biosolids, use the more restrictive setback of the two categories for plan development.

- Setbacks for plans <u>not</u> associated with Biosolids applications, VPA permitted animal operations or DEQ industrial waste application permits.
 - 100 feet from wells or springs
 - ▶ 50 feet from surface water if surface applied
 - 25 feet from surface water if injected
 - 50 feet from sinkholes*
 - ▶ 50 feet from limestone rock outcrops
 - 25 feet from other rock outcrops
- * Manure and biosolids should not be applied in such a manner that it would drain into sinkholes.
- Setback distances for manure applications in plans written as part of a VPA or VPDES permit for confined animal feeding operations.
 - 100 feet from wells or springs
 - 100 feet from surface waters (no vegetated buffer) or 35 feet with a vegetated buffer** in place or a DEQ approved conservation practice that will achieve at least equivalent pollutant reductions.
 - 50 feet from sinkholes*
 - ▶ 50 feet from limestone rock outcrops
 - 25 feet from other rock outcrops
 - 10 feet from agricultural drainage ditches (5 feet if injected)
 - 200 feet from occupied dwellings (unless waived in writing by the occupant)
- * Waste shall not be applied in such a manner that it would discharge into sinkholes.
- ** Vegetated buffer is a permanent strip of dense vegetation established parallel to the contours of and perpendicular to the dominant slope of the field.

Minimum distances to Land Application Area*			
Adjacent Features	Surface Application (ft) ⁽¹⁾	Incorporation (ft)	Winter (ft) ⁽²⁾
Occupied Dwellings	200	200	200
Water Supply wells and springs	100	100	100
Property Lines	100	50	100
Perennial streams and other surface waters except intermittent streams	50	35	100
Intermittent streams/drainage ditches	25	25	50
All improved roadways	10	5	10
Rock outcrops	25	25	25
Limestone rock outcrops and sinkholes	50	50	50
Agricultural drainage ditches with slopes equal to or less than 2.0%	10	5	10

Setback distances for plans containing Biosolids applications.

Notes:

If slopes are greater than 7.0% and biosolids will be applied between November 16 and March 15, standard buffer distances to perennial streams other surface water bodies shall be doubled.

- (1) Not plowed or disked to incorporate within 48 hours
- (2) Application occurs on average site slope greater than 7.0% during the time between November 16 of one year and March 15 of the following year

The stated setbacks to adjacent property boundaries and drainage ditches constructed for agricultural operations may be reduced by 50% for subsurface application (includes same day incorporation) unless state or federal regulations provide more stringent requirements.

In cases where more than one buffer distance is involved, only the single most restrictive distance shall be used.

Section II. Soil Test Calibrations and Correlations

Table 2-1				
Virginia	Tech	Soil	Test	Calibrations

Calibration of Phosphorus (P) & Potassium (K) Tests, Mehlich I Virginia Tech Soil Testing Laboratory

Fertility Rating	P – Ibs/ac	P - PPM	P_20_5 – Ibs/ac*
L-	0-3	0-2	0-7
L	4-8	2-4	9-18
L+	9-11	5-6	21-25
M-	12-20	6-10	28-46
М	21-30	11-15	48-69
M+	31-35	16-18	71-80
H-	36-55	18-28	82-126
Н	56-85	28-43	128-195
H+	86-110	43-55	197-252
VH	110+	55+	252+

Fertility Rating	K – Ibs/ac	K - PPM	K ₂ 0 – Ibs/ac*
L-	0-15	0-8	0-18
L	16-55	8-28	19-66
L+	56-75	28-38	68-90
M-	76-100	38-50	92-121
М	101-150	51-75	122-181
M+	151-175	76-88	182-211
H-	176-210	88-105	212-253
Н	211-280	106-140	254-337
H+	281-310	141-155	339-373
VH	310+	155+	373+

* Gaps exist between the fertility ratings because of the conversion from elemental lbs/ac to the phosphate and potash forms. When converting from another lab into the phosphate and potash forms choose the closest Fertility Rating to the converted value.

Virginia Tech Soil Test results - lbs/ac converted to ppm

VA Tech P lbs/ac x 0.5 = VA Tech P ppm

VA Tech K lbs/ac x 0.5 = VA Tech K ppm

Section II.A. Correlation of Soil Analysis Results for Phosphorus and Potassium between A & L Laboratory and Virginia Tech

Phosphorus: (Mehlich III Only)

A & L Phosphorus ppm X 0.50 = VA Tech - P ppm

Potassium

A & L Potassium ppm X 0.71 = VA Tech - K ppm

Section II.B. Correlation of Soil Analysis Results for Phosphorus and Potassium between Brookside Laboratory and Virginia Tech

Phosphorus: (Mehlich III)

Brookside **Easily Extractable** P_2O_5 lbs/A X 0.098 = VA Tech - P ppm

Potassium

Brookside K lbs/A X 0.36 = VA Tech - K ppm

Section II.C. Correlation of Soil Analysis Results for Phosphorus and Potassium between Logan Laboratories, Inc. and Virginia Tech

Phosphorus: (Mehlich III)

Logan Labs P_2O_5 lbs/ac. X .143 = VA Tech - P ppm

Potassium

Logan Labs K lbs/ac. X 0.40 = VA Tech - K ppm

Section II.D. Correlation of Soil Analysis Results for Phosphorus and Potassium between Spectrum Analytic, Inc. and Virginia Tech

Phosphorus: (Mehlich III)

Spectrum Available Phosphorus (P) lbs/ac. x 0.218 = VA Tech - P ppm

Potassium

Spectrum Available Potassium (K) lbs/ac. x 0.313 = VA Tech - K ppm

Section II.E. Correlation of Soil Analysis Results for Phosphorus and Potassium between Waters Agricultural Lab., Inc and Virginia Tech

Phosphorus: (Mehlich I)

Waters Lab. **Phosphorus (P)** lbs/ac. x 0.485 = Va Tech - P ppm

Potassium

Waters Lab. **Potassium (K)** lbs/ac. x 0.53 = Va Tech - K ppm

Section III. Lime Recommendations for Virginia Crops (Except Commercial Turf, Surface-Mined Area Crops, Greenhouse, and Nursery Production)

To use the following table for lime recommendations use the soil pH from the soil test, the soil texture of the predominate soils in the field, and the crop to be grown.

Use of various pH Ranges

The pH Desired-5.8 Table shows recommendations applicable to mainly tobacco and potatoes, where the lower pH is desired for the crop to be grown.

Lime rates shown for pH Desired-6.2 are recommendations that provide an adequate rate of aglime to adjust the pH to an acceptable range for Most Crops agronomic crops.

	Soil Type		
pH of	Sandy	Loamy	Clayey
Unlimed Soil		Lime, Tons/ac	re
4.8	2.25	3.0	3.5
5.0	1.75	2.5	3.0
5.2	1.25	2.0	2.5
5.5	0.75	1.25	1.5

pH Desired – 5.8 (Tobacco)

pH Desired – 6.2 (Most Field Crops)

		Soil Typ	De
pH of	Sandy	/ Loamy	Clayey
Unlimed Soil	Lime, Tons/acre		
4.8	3.00	3.75	4.25
5.0	2.50	3.25	3.75
5.5	1.25	1.75	2.25
6.0	0.0	0.0	0.0

pH Desired – 6.8 (Alfalfa)

Soil Typ		Soil Type	
pH of	Sandy	Loamy	Clayey
Unlimed Soil	Lime, Tons/acre		
4.8	4.25	5.75	7.0
5.0	4.0	5.25	6.25
5.5	3.0	4.0	4.75
6.0	2.0	2.75	3.25
6.5	1.25	1.5	2.0
Greater than 6.5	0.0	0.0	0.0

The pH Desired-6.5 table may be used to determine maximum rates for lime stabilized biosolids applied **inside** the Coastal Plain area. This table shows higher rates of lime stabilized biosolids, than would normally be applied to meet the lime requirement, to get more use out of the other nutrients contained in the biosolids. Exceeding the rates shown for Desired pH - 6.5, may exceed the desirable pH range, and this may cause induced

deficiencies of some nutrients while increasing availability of other nutrients to a toxic level for the crop being grown.

The pH Desired-6.8 table may be used to determine maximum rates for lime stabilized biosolids <u>outside</u> the Coastal Plain area of Virginia. This table shows higher rates of lime stabilized biosolids than would normally be applied to meet the lime requirement for most agronomic crops, to get more use out of the other nutrients contained in the biosolids. Exceeding the rates shown for Desired pH-6.8 may exceed the desirable pH range and this may cause induced deficiencies of some nutrients while increasing availability of other nutrients to a toxic level for the crop being grown.

While these tables allow a higher than normal application of lime, application rates of biosolids can not exceed the nitrogen or phosphorus needs, which ever is less, as established in the nutrient management plan.

	Soil Type		
pH of	Sandy	Loamy & Clayey	
Unlimed Soil	Unlimed Soil Lime, Tons/a		
4.8	3.5	4.5	
5.0	3.0	3.75	
5.5	1.75	2.5	
6.0	1.25	1.5	
6.3	0.75	1.0	
Greater than 6.3	0.0	0.0	

pH Desired – 6.5 (Coastal Plain)

pH Desired – 6.8 (Outside Coastal Plain)

	Soil Type	
pH of	Sandy	Loamy & Clayey
Unlimed Soil	Lime, ⁻	Tons/acre
4.8	4.25	5.75
5.0	4.0	5.25
5.5	3.0	4.0
6.0	2.0	2.75
6.5	1.25	1.5
Greater than 6.5	0.0	0.0

Grouping of Soil textures for Lime Recommendation Table:

Sandy - Sand, Loamy Sand, Sandy Loam

Loamy - Loam, Silt Loam, Silt, Sandy Clay Loam, Clay Loam, Silty Clay Loam Clayey - Silty Clay, Clay, Organic Soils

Limestone Application Methods

<u>Applications of 2 tons or less per acre</u> - Adding this amount in a single application either before or after plowing will usually give best results. Limestone applied before plowing should be disked into the soil and then plowed. Limestone applied after plowing should be disked into the soil as thoroughly as possible.

<u>Applications of more than 2 tons per acre</u> - For the best results, apply one-half of the limestone, disk into the soil, plow under and then apply the second-half and disk into the soil. This method offers the best incorporation of limestone into the soil and is particularly important when the soil pH is very low and large amounts of limestone are needed.

For no-till cropping systems - Where incorporation of limestone is not possible, single applications should be limited to no more than 2 tons per acre. Where more than 2 tons per acre are recommended (indicating very low pH), limestone should be incorporated as mentioned above for best results. If incorporation is not feasible, apply one-half the total amount one year and the other half the next year.

<u>Time of application</u> - The best time to apply limestone is several months ahead of planting. This allows for more complete reaction of the limestone with the soil. However, if this cannot be done, apply it as early as possible, before the crop is planted. Failing to apply limestone because it could not be applied at the best time is worse than applying it late.

Source: Soil Test Notes, Virginia Tech, Extension Division, Soil Testing Laboratory, MA-232, April 1979.

Lime Recommendations Using Other Testing Labs

The lime recommendation tables shown above should be applied to labs using a 1:1 water pH test to get the soil pH value, which would be Brookside Laboratories, Spectrum Analytical, and Waters Agricultural Lab. For Virginia Tech samples showing only a Soil pH test use the above lime recommendation table as well. For Virginia Tech soil samples showing a soil pH and a buffer pH use the table designated as Virginia Tech Lime recommendations using the Buffer pH Method. Recommendations may be made using the VPI&SU chart contained in this section or the lime recommendations made by the testing lab. Whichever methods are used, planners should consistently use that method throughout the plan. It would be wise to make a note either in the narrative or on the balance sheet of which method the planner used so that when the plan is updated, the same method will continue to be used.

Section IV. Phosphorus Management

Phosphorus application rates shall be managed to minimize adverse water quality impacts consistent with procedures contained in this section.

- Phosphorus applications from inorganic nutrient sources shall not exceed crop nutrient needs over the crop rotation based on a soil test.
- Phosphorus applications shall be indicated as zero in nutrient management plans for soils exceeding specified phosphorus saturation levels as listed in Table 4-1 regardless of the outcome of other procedures specified in this section. The specified phosphorus saturation levels pertain to the following plan development dates: (i) 65% for plans developed after 12/31/2005 through 12/31/2010; and (ii) 50% for plans developed after 12/31/2010.

Table 4-1Virginia Tech Mehlich 1 Phosphorus (as ppm P) for Specified Virginia Phosphorus Saturation
Levels where Phosphorus Shall Not be Applied
(Must use approved conversion factors if results are from another lab)

Plan Development D		opment Date
	After 12/31/05	After 12/31/10
Pasture/Hayland	65% Saturation	50% Saturation
Region	Soil Test P (ppm)	Soil Test P (ppm)
Eastern Shore and Lower Coastal Plain	197	137
Middle and Upper Coastal Plain and Piedmont	266	175
Ridge and Valley	373	225

	<u>Plan Develo</u>	pment Date
	After 12/31/05	After 12/31/10
Continuous No-till	65% Saturation	50% Saturation
Region	Soil Test P (ppm)	Soil Test P (ppm)
Eastern Shore and Lower Coastal Plain	246	172
Middle and Upper Coastal Plain and Piedmont	333	218
Ridge and Valley	466	281

	Plan Development Date	
	After 12/31/05	After 12/31/10
All Others	65% Saturation	50% Saturation
Region	Soil Test P (ppm)	Soil Test P (ppm)
Eastern Shore and Lower Coastal Plain	295	206
Middle and Upper Coastal Plain and Piedmont	399	262
Ridge and Valley	560	337

- **Note:** All Soil Test P values in this table are shown as elemental phosphorus, expressed as a Virginia soil test value. Section II. provides conversion formulas for approved labs.
- A single phosphorus application may be recommended to address multiple crops in the crop rotation identified within the nutrient management plan if the single application does not exceed the sum of the appropriate application rates for individual crops as determined by this subsection.

For fields that do not exceed the maximum phosphorus saturation levels in the previous tables, one of the following options must be used to determine maximum organic nutrient source phosphorus applications for fields contained in nutrient management plans. The Environmental Threshold and the Virginia Phosphorus Index Version 1.3 Technical Guide, Revised March 2005 are only applicable to organic nutrient sources. Additionally, plant available nitrogen in nutrient management plans shall not exceed the crop nutrient needs for any individual crop.

Soil Test Method

With this method phosphorus recommendations are made using: (1) the soil test level for the field and (2) recommendations for the crop as shown in Section V.

Environmental Threshold Method

Table 4-2 can be used for phosphorus applications of organic nutrient containing materials.

Eastern Shore and Lower Coastal Plain			
VPI&SU Soil Test (Mehlich I) P ppm Maximum Phosphorus Application Rate			
<55	Nitrogen Based		
55 - 127	1 X Crop Removal		
>127	No Phosphorus Applications		

Table 4-2Phosphorus Environmental Thresholds

Middle and Upper Coastal Plain and Piedmont		
VPI&SU Soil Test (Mehlich I) P ppm Maximum Phosphorus Application Rate		
<55	Nitrogen Based	
55- 148	1 X Crop Removal	
>148	No Phosphorus Applications	

Ridge and Valley		
VPI&SU Soil Test (Mehlich I) P ppm Maximum Phosphorus Application Rate		
<55	Nitrogen Based	
55 - 165 1 X Crop Removal		
>165	No Phosphorus Applications	

An index to counties and cities by region can be found in the Virginia Phosphorus Index Version 1.3 Technical Guide, Revised March 2005.

Other laboratories results shall only be used if conversion factors are published in Virginia Nutrient Management Standards and Criteria, Revised 2005 and the appropriate conversion factor is utilized.

The Virginia Nutrient Management Planning P_2O_5 Removal Table for Grain and Forage Crops, Table 4-7, must be used to calculate the crop removal of phosphorus in this method.

Phosphorus Index Method

This method consists of a series of calculations to determine a Phosphorus Index Value which is then used to determine a management strategy for organic nutrient sources containing phosphorus which are to be applied to cropland. The complete description of the Phosphorus Index methodology with supporting instructions and data tables is found in Virginia Phosphorus Index Version 1.3 Technical Guide, Revised March 2005. The determination of acceptable phosphorus Index Version 1.3 Technical Guide, Revised March 2005. The determination of acceptable phosphorus Index Version 1.3 Technical Guide, Revised March 2005 unless otherwise specified below. Any uses of the term "should" contained in the "Summary Interpretation of Phosphorus Index" table and in Table 2 – "Screening criteria based on phosphorus saturation levels for application of the Virginia Phosphorus Index", as contained in the Virginia Phosphorus Index Version 1.3 Technical Guide, Revised March 2005 must be treated as "shall" (mandatory requirements) by certified nutrient management planners.

Phosphorus Index Formula

(Erosion Risk Factor* X 6.3)

+ (Runoff Risk Factor X 6.3)

+ (Subsurface Risk Factor X 6.3) =

Phosphorus Index Value

Table 4-3

Interpretation of Phosphorus Index Value		
P Index Value	Potential Water Quality Impact	
0-30	Low	Nitrogen cannot exceed N needs; Phosphorus applications should be managed to reduce adverse water quality impacts.
31-60	Medium	Nitrogen cannot exceed N needs; Phosphorus applications shall not exceed 1.5 times crop removal**
61-100	High	Nitrogen cannot exceed N needs; Phosphorus applications shall not exceed crop removal**
> 100	Very High	Nitrogen cannot exceed N needs; no Phosphorus shall be applied during the life of the plan

* In the Erosion Risk Factor calculation of the Phosphorus Index the soil loss must be determined by using either the RUSLE 2 method or the "Erosion Risk Assessment Procedure (ERA)" outlined below. If soil loss for use in the Phosphorus Index is developed using RUSLE2, the crop rotations and tillage practices in the nutrient management plan shall be consistent with RUSLE2 inputs as documented on the RUSLE2 Profile Erosion Calculation Record.

** Phosphorus crop removal may be calculated as an application to meet each crop need or a single application per rotation to meet the total removal of all the crop needs for that rotation within the valid life of the nutrient management plan. The Virginia Nutrient Management Planning P₂O₅ Removal Table for Grain and Forage Crops, Table 4-7, must be used to calculate the crop removal of phosphorus in this method.

Erosion Risk Assessment Procedure (ERA)

This following procedure may be used to determine the ERA soil loss value which can be substituted for the soil loss value in the Erosion Risk Factor equation, which is part of the Phosphorus Index determination. **NOTE:** This Erosion Risk Assessment can only be used to determine this factor and should not be substituted for the RUSLE 2 soil loss method in any other program.

[S (Map Unit TC_i x Map Unit SE_i x %Map Unit)] x TM = Erosion Risk Assessment (ERA)

Where: TC - Topography and Climate Factor

- SE Soil Erosion Factor
- TM -Tillage Management Factor

For each field, estimate the area for each soil map unit and use the table below as a template to calculate the Topography and Climate Factor and Soil Erosion Factor, using the tables provided, as a weighted average for the field, then apply the remaining factor to the entire field.

Topography & Climate (TC)	X Soil Erosion (SE)	X % Area of Field = Subtotal (express as a decimal)	
		0	
		0	
		0	
		0	
Total of Weig	ghted Averages	for TC and SE	
\checkmark			
X	TM =	Tons/ac. (ERA	A soil loss value)

Table 4-4Erosion Risk Assessment Formula

ERA-TC Factors

These factors represent a combination of the Topography and Climate factors for the areas of Virginia listed below designated by map unit slope.

Table 4-5Topography and Climate Factors

Soil Survey Map Unit Slope	Hay/Pasture TC	Crop TC
А	.40	.44
В	1.24	1.41
С	2.48	2.78
D	4.35	4.92
E	7.80	8.57
F	11.58	10.87

Coastal Plain (East of I-95)

Northern Piedmont (North of James River-West of I-95)

Soil Survey Map Unit Slope	Hay/Pasture TC	Crop TC
A	.29	.33
В	.96	1.17
С	2.40	2.67
D	4.63	5.17
E	7.17	7.20
F	11.33	11.07

Southern Piedmont (South of James River-West of I-95)

Soil Survey Map Unit Slope	Hay/Pasture TC	Crop TC
A	.33	.37
В	1.08	1.32
С	2.69	3.00
D	5.20	5.80
E	8.05	8.09
F	12.72	12.43

Mountain and Valley

Soil Survey Map Unit Slope	Hay/Pasture TC	Crop TC
А	.26	.28
В	.85	.97
С	2.19	2.40
D	4.35	4.59
E	7.99	8.42
F	11.20	11.25

SE Factor

This factor represents the soil erodibility factor based on soil texture and designated by county and map unit symbol. The SE factor is determined by using the K factor for specific soils found in the USDA-NRCS electronic Field Office Technical Guide.

ERA - TM Factors

This factor represents the Tillage Management designated by crop or crop rotation being grown.

Annual Crop Rotation	Tilled	Mixed *	No-till
Corn Silage - Continuous	30	-	15
Corn Silage / Small Grain.Silage	22	19	16
Corn Silage / Small Grain	18	9	7
Corn Grain - Continuous	12	-	3
Corn Grain / Small Grain	6	5	1
Corn Grain / Small Grain Silage	13	7	6
Small Grain / DC Soybeans	10	6	4
Soybeans – Full Season	17	-	8
Peanuts	19	-	-
Peanuts / Small Grain	11	8	3
Cotton	20	-	12
Cotton / Small Grain	11	8	3
Tobacco	46	-	-
Tobacco / Small Grain	30	25	18
Vegetables	35	-	16
Vegetables / Small Grain	20	16	8
Other Row Crops (Grain)	17	-	8
Other Summer Annuals with Small Grain	13	8	7
Other Summer Annuals with Small Grain Silage	22	19	16
Hay – Legume (maintenance)	-	-	2
Hay – Grass or Mixed (maintainance)	-	-	1
Pasture < 50% cover or heavily grazed	-	-	4
Pasture 50-75% cover not heavily grazed	-	-	2
Pasture >75% cover and lightly grazed	-	-	1
Hay or Pasture Establishment**	11	-	3

Table 4-6Tillage Management

***Mixed** = double crop with one crop tilled and one crop no-till

- **Fall Establishment-use previous crop sequence TM Factor or Establishment Factor whichever is greater. For Spring Establishment use number shown.
- The TM factor is determined by the rotation and the tillage types, regardless of the beginning season of the plan. (Notes continued on next page)

- Add the TM factor for each year of the rotation, not to exceed a three year plan life, and divide by the number of years to determine the TM factor to be used for that field during the life of the plan.
- If the crop rotation is not included in the table above, RUSLE 2 must be used to determine the soil loss for that rotation.
- If tillage or crop rotation is changed, the TM must be re-calculated and the P-Index must be re-calculated.
- Corn Grain assumes all stalks remain on field after harvest.
- Small Grain = cover crop or grain harvest only, no straw removal. If straw is removed use silage TM Factor

Table 4-7Virginia Nutrient Management Planning P₂O₅ Removal Table for Grain
and Forage Crops

CROP	YIELD UNIT	LBS P205 PER YIELD UNIT
GRAINS		
Barley (cover crop)	NA	0
Barley	bushels	0.40
Barley straw (per bushel grain)	bushels	0.11
Barley-soybean dbl crop	bushels	**
Buckwheat	bushels	0.37
Canola	bushels	1.3
Corn	bushels	0.40
Oat (cover)	NA	0
Oat	bushels	0.30
Oat straw (per bushel grain)	bushels	0.09
Proso millet	bushels	0.39
Rye (cover crop)	NA	0
Rye	bushels	0.44
Rye straw (per bushel grain)	bushels	0.17
Sorghum	bushels	0.4
Soybean	bushels	0.8
Sunflower	tons	27
Triticale	bushels	0.39
Wheat (cover crop)	NA	0
Wheat	bushels	0.5
Wheat straw (per bushel grain)	bushels	0.11

CROP	YIELD UNIT	LBS P ₂ O ₅ PER YIELD UNIT
SILAGE *	•	
Barley silage	tons	5.1
Corn silage	tons	4.0
Grass silage	tons	3.7
Oats silage	tons	5
Rye silage	tons	5.6

Table 4-7Virginia Nutrient Management Planning P₂O₅ Removal Table for
Grain and Forage Crops

CROP	YIELD UNIT	LBS P ₂ O ₅ PER YIELD UNIT
SILAGE *	•	
Sorghum silage	tons	3
Soybean silage	tons	10
Wheat silage	tons	4.2

CROP	YIELD UNIT	LBS P2O5 PER YIELD UNIT
FORAGES *		
Alfalfa hay	tons	12.5
Alfalfa-grass hay	tons	12.5
Bermudagrass hay	tons	10.4
Bermudagrass pasture	NA	****
Birdsfoot trefoil	tons	21
Bluegrass	tons	18
Bromegrass	tons	13
Bluestem species	tons	10
Clover and grass	tons	14
Fescue grass hay	tons	16
Fescue grass-Ladino Clover hay,	tons	14
Gamagrass	tons	11
Hay/Pasture	***	16
Hairy vetch	tons	14
Indiangrass	tons	10
Legume cover crop	NA	0
Lespedeza	tons	10
Millet	tons	8.4
Native/unimproved pasture	NA	***
Orchardgrass hay	tons	16
Orchardgrass hay-Ladino clover	tons	16
Orchardgrass/Fescue pasture	NA	***
Perennial ryegrass	tons	17
Red clover	tons	10
Red clover-grass hay	tons	14
Reed canarygrass	tons	12

Table 4-7Virginia Nutrient Management Planning P₂O₅ Removal Table for
Grain and Forage Crops

CROP	YIELD UNIT	LBS P ₂ O ₅ PER YIELD UNIT
FORAGES *		
Small grain hay	tons	10
Sorghum	tons	8.4
Sorghum x sudangrass (Sudax)	tons	10
Sorghum-sudan, millet, sudan (hay)	tons	10
Soybean and sorghum	tons	9.2
Soybean hay	tons	10
Soybean and millet	tons	9.2
Soybean and Sudangrass	tons	10
Switchgrass	tons	10
Sudangrass	tons	10
Tall fescue hay	tons	16
Timothy	tons	14
Weeping lovegrass	tons	10

CROP	YIELD UNIT	LBS P ₂ O ₅ PER YIELD UNIT
SEED CROPS		
Crimson clover seed	pounds	0.018
Lespedeza seed	pounds	0.016
Red clover seed	pounds	0.016
White clover	pounds	0.030

CROP	YIELD UNIT	LBS P ₂ O ₅ PER YIELD UNIT
VEGETABLES	·	
Asparagus	cwt	0.13
Beet (root)	cwt	0.092
Beet (top)	cwt	0.12
Broccoli	cwt	0.18
Brussels sprout	cwt	0.29
Cabbage	tons	1.8
Carrot	cwt	0.092
Cauliflower	cwt	0.14
Celery	cwt	0.083

Table 4-7Virginia Nutrient Management Planning P₂O₅ Removal Table for
Grain and Forage Crops

CROP	YIELD UNIT	LBS P ₂ O ₅ PER YIELD UNIT
VEGETABLES		
Chive	cwt	0.12
Collard	cwt	0.13
Cucumber	tons	1.1
Eggplant	cwt	0.050
Endive	cwt	0.051
Escarole	cwt	0.032
Garlic	cwt	0.39
Kale	cwt	0.13
Leek	cwt	0.080
Lettuce (head)	cwt	0.79
Lettuce (leaf)	cwt	0.10
Lima bean	cwt	0.34
Mustard green	cwt	0.10
Okra	cwt	0.15
Onion (dry)	cwt	0.60
Onion (green)	cwt	0.084
Parsley	cwt	0.092
Parsnip	cwt	0.16
Pea	cwt	0.57
Pepper	cwt	0.066
Potato	cwt	0.14
Pumpkin	tons	1.7
Radish	cwt	0.064
Rutabaga	cwt	0.092
Snap bean	cwt	0.23
Spinach	cwt	0.15
Squash (summer)	cwt	0.064
Squash (winter)	cwt	0.079
Sweet corn	cwt	0.14
Sweet potato	cwt	0.12
Tomato	tons	2.0
Turnip (root)	cwt	0.065
Turnip (green)	cwt	0.14

Table 4-7 Virginia Nutrient Management Planning P₂O₅ Removal Table for Grain and Forage Crops

CROP	YIELD UNIT	LBS P ₂ O ₅ PER YIELD UNIT
FRUITS		
Apple	bushels	0.020
Grape	tons	2.0
Honeydew melon	tons	1.3
Muskmelon	tons	3.5
Peach	bushels	0.033
Watermelon	tons	0.47
Strawberry	cwt	0.043

CROP	YIELD UNIT	LBS P ₂ O ₅ PER YIELD UNIT
MISCELLANEOUS	•	
Cotton (seed & lint)	tons	26
Cotton (stalk, leaf & bur)	tons	10
Tobacco (leaf & stalk - based on harvest leaf weight)	lb leaves	.009

NOTES:

- * Use 1/2 of the yield from VALUES if planted in the spring, 0 if planted in the fall, to calculate crop removal for the establishment year.
- ** For double crops, add removal for each crop
- *** Use 2/3 hay yield from VALUES or use the actual yield from field records, to calculate crop removal.
- **** 30 lbs P_2O_5 Removal for Productivity Group I 30 lbs P_2O_5 Removal for Productivity Group II 25 lbs P_2O_5 Removal for Productivity Group III 20 lbs P_2O_5 Removal for Productivity Group IV

Section V. Crop Nutrient Recommendations (VALUES)

Phosphorus and Potash recommendations in this table are based on soil test results.

Corn Grain Recommendations*

Productivity Group	N Recommendation
IA	180
IB	170
IIA	160
IIB	150
IIIA	140
IIIB	130
IVA	120
IVB	100
V	80

Soil Test Level	Nutrient Recommendations (lbs/ac)	
	P ₂ O ₅	<u>K2</u> O
L	8 <u>0 -12</u> 0	8 <u>0 -12</u> 0
Μ	40 - 80	40 - 80
Н	20 - 40	20 - 40
VH	0	0

*See nitrogen management explanation after Corn Silage Recommendations.

Corn Silage Recommendations*

Productivity Group	N Recommendation
IA	200
IB	185
IIA	175
IIB	165
IIIA	155
IIIB	145
IVA	130
IVB	110
V	90

Soil Test Level	Nutrient Recommendations (lbs/ac)	
	<u>P₂O₅</u>	<u>K₂O</u>
L	80 - 120	160 - 240
Μ	40 - 80	80 - 160
Н	20 - 40	40 - 80
VH	0	0

*See nitrogen management explanation after Corn Silage Recommendations.

Nitrogen Management Recommendations for Corn

On soils with a High nitrogen loss risk, at least 50% of the inorganic nitrogen applications shall be applied as a sidedress application. On Moderate and Low nitrogen loss risk soils this management method is preferred, but not required. The combination of row starter, at planting nitrogen applications and sidedress applications cannot exceed the nitrogen need listed for that crop in that field.

Fields which contain high environmental risk soils for nitrogen loss where organic nutrient sources are used to meet most of the nitrogen need for corn shall include a split application of nitrogen which is at least 33% of the nitrogen needs to be applied as a sidedress application. If no pre-plant nitrogen will be broadcast and planting conditions exist where the cold soil temperatures may be limiting mineralization of nitrogen, starter nitrogen may aid in plant establishment and early season growth. Starter nitrogen any pre-plant nitrogen plus the plant available nitrogen supplied from the organic sources cannot exceed the nitrogen needs shown in the plan for that field.

Irrigated Corn

These expected yields and nitrogen recommendations should not be used for manure irrigation unless supplemental clean water irrigation is utilized since manure applications should usually occur prior to the times of peak moisture demand by crops to allow time for mineralization, and the quantity of water supplied would probably be insufficient.

Expected Corn Yield, BU/AC	Soil Management Groups	N Recommendation
210	A,B,D	210
200	C,E,F,G,J,K,L,M,N,O,Q,R,S,T	200
190	I,DD	190
180	V,W,X	180
170	AA,BB,II	170
160	Y	160
140	КК	140

Irrigation of soils in the following soil management groups is not recommended; factors other than water-holding capacity may be the yield limiting factor; H, P, U, Z, CC, EE, FF, GG, HH, LL, MM, NN, OO, PP, QQ. Use dryland yields in Table 1-2.

The following criteria is recommended for all irrigated. Nitrogen use efficiency by irrigated corn can be increased by splitting the total sidedress rate of nitrogen into two applications, with the second of the two applications occurring just before the corn is too tall to drive through with the application equipment. If this second application is applied through system, it should be applied about 7-10 days before silking.

For traveling gun systems, yield response will be highly variable depending upon management of the system. A reasonable estimate of planning yield is 90% of the above estimates for properly scheduled irrigation. If historical yields are available, their use is preferred. An average of the high three yields in the last five years should be used.

Phosphorus and Potash Recommendations for irrigated corn fields as defined above.

Soil Test Level	Nutrient Recommendations (lbs/ac)	
	P ₂ O ₅	K₂O
L	13 <u>0 - 1</u> 70	13 <u>0 - 1</u> 70
Μ	80 - 120	80 - 120
Н	30 - 70	30 - 70
VH	0	0

Pre-Sidedress Soil Nitrate Test (PSNT)

Sample collection essentials for PSNT for corn:

Select fields where organic sources of nitrogen have been applied, according to the timing criteria listed in the Virginia Nutrient Management Training and Certification Regulations under Nutrient Application Timing, to supply nitrogen to the present corn crop

Sample collection - At least 10-20 cores per field, 12 inches deep, between rows to avoid starter bands and areas where roots have not depleted nitrogen

Sample time - corn should be 10" to 15" tall at the whorl as it stands, **NOT** to the tallest part of the plant.

Only <u>one</u> of the following options can be used to determine sidedress rate adjustment in any one season, based on the criteria outlined for each option. <u>Only</u> Option One can be used for sidedress rate adjustment if relatively "normal" weather conditions have occurred up to sidedress time.

Option 1 - Adjustment of Nitrogen Sidedress Recommendations

Nitrogen needs and timing of applications for corn shall be calculated based on criteria outlined in section VAC 5-15-150.A.2.e. of the Virginia Nutrient Management Training and Certification Regulations. When organic nutrient sources have been used to supply a significant portion of the nitrogen need and a nitrogen sidedress application rate has been recommended, the PSNT results and the guidance below shall be used to adjust the sidedress rate when applicable. This guidance should be used as one factor along with rate of organic material applied, field history, seasonal conditions, and an understanding of the effects of soil properties and management practices related to nitrogen availability to corn to adjust the sidedress Nitrogen rate stated in

the nutrient management plan to improve the economics of crop production and enhance water quality.

Nitrate-N Conc.	N Rate Recommendation
< 11 ppm	Apply full rate of sidedress N that is specified for the field in
	the nutrient management plan.
11-20 ppm	Apply 50 - 75% of sidedress N that is specified for the field in the nutrient management plan. The decision to reduce the recommended nitrogen rate must be made on a site-by site basis and should take into account previous field history, organic N additions, and management practices.
> 20 ppm	Nitrate nitrogen at a level to meet the yield goal without any sidedress nitrogen needed.

Option 2 - Adjustment of Nitrogen Sidedress Recommendations Considering Extreme Weather

If extreme weather conditions occur, such as two of more rainfall events exceeding 2"+ since the nitrogen application, which have caused significant amounts of nitrogen to be leached below the root zone or mineralization of organic nitrogen sources are much lower than expected, a one time corrective nitrogen sidedress application can be made consistent with the following table if: a) nitrogen applications have been made such that rate and timing of applications have been consistent with the criteria in 4VAC 5-15-150, b) and corn shows visual signs of nitrogen deficiency, c) and a PSNT indicates NO₃-N is below 20 ppm in the top 12" of the field.

Nitrate-N Conc.	N Rate Recommendation
< 6 ppm	Apply planned sidedress N that is specified for the field OR
	50% of the nitrogen needs shown in the nutrient
	management plan for that field, whichever is greater.
6 - 11 ppm	Apply planned sidedress N that is specified for the field OR
	40% of the nitrogen needs shown in the nutrient
	management plan for that field, which ever is greater.
12 - 20 ppm	Apply 50 - 75% of sidedress N that is specified for the field
	OR 30% of the nitrogen needs shown in the nutrient
	management plan for that field.
> 20 ppm	Nitrate nitrogen at a level to meet the yield goal without any
	sidedress nitrogen needed.

Grain Sorghum

Productivity Group	N Recommendation
IA	140
IB	130
IIA	120
IIB	110
IIIA	100
IIIB	90
IVA	90
IVB	90
V	80

Soil Test Level	Nutrient Recommendations (lbs/ac)	
	<u>P₂O₅</u>	<u>K₂O</u>
L	8 <u>0 -12</u> 0	8 <u>0 -12</u> 0
Μ	40 - 80	40 - 80
Н	20 - 40	20 - 40
VH	0	0

Soil Test Level	Nutrient Recomm	
	(<u>lbs/ac)</u> P₂O₅	<u>K₂O</u>
L	8 <u>0 -12</u> 0	80 -120
Μ	40 - 80	40 - 80
Н	20 - 40	20 - 40
VH	0	0

<u>Small Grain Management Options</u>: Choose recommendations based on the intended use of the crop by the farmer.

- 1. Cover Crop this crop is grown for the sole purpose of scavenging any residual nitrogen from the previous crop due to lower than expected yield or mineralization of applied organic nutrient materials to the previous crop is expected to occur after the crop is harvested.
- 2. Small Grain Silage this crop is planted for the intended purpose of harvest in early Spring for silage. Similar Fall tiller management practices should be applied as used in Standard/Intensive Management of Wheat and Barley.
- 3. Wheat and Barley: Standard/Intensive Grain Production- this crop is to be managed based on a program to maximize grain yield by planting within the window of acceptable dates according to location within the state, careful tiller management through the Fall and Winter months and Spring split application rates of nitrogen based on tiller counts and tissue tests.
- 4. Small Grain Trap Crop the purpose of this crop is to provide fields which can receive manure, biosolids, or other organic nutrient source applications through the fall and winter months for management of limited storage facilities of these materials. The crop may be used as mulch cover or harvested, however, achieving a harvestable crop with acceptable yield is not the primary purpose of this management practice, and should NOT be substituted the standard/intensive management program or the silage program.

Nutrient Recommendations by Small Grain Program

Cover Crop

Crop should be planted early enough in the Fall to be quickly established after the harvested crop from which expected residual nitrogen release may be substantial. Nutrients from any source shall NOT be applied to this crop, unless it is within acceptable criteria of timing for a Spring planted crop.

Nutrient Red	commendations ((lbs/ac)
Nitrogen	<u>P₂O₅</u>	<u>K</u> 20
0	0	0

Cereal Grain Trap Crop

The propose of the following recommendations are to provide fields which can receive manure, biosolids and other organic nutrient source applications through the fall and winter months for management of storage facilities. This program is <u>NOT</u> intended to be used for Intensive Small Grain recommendations or for Small Grain silage recommendations.

1. Eligible Fields:

- a. Acceptable small grains are barley, wheat, rye, triticale
- b. Seeding of all seed types must be established by the dates indicated in the table below.

Region		
Cites of Chesapeake & VA Beach		
Coastal Plain		
Piedmont		
Mountain and Valley		

Established Date

November 30 November 15 November 1 October 25

2. Fall - Winter Nitrogen Rates

Nitrogen rates will be calculated Using Spring or Early Fall Applied Coefficients for Manures and Year of Application Coefficient for Biosolids to calculate the PAN for the organic fraction and appropriate coefficient for PAN ammonium fraction for all materials.

Nutrient Recommendations (lbs/ac)			
Nitrogen	P_2O_5	K₂O	
0-40	0	0	

3. Late Winter - Early Spring Nitrogen Rates

a. Trap crop will be killed before Spring Crop is planted & No Nitrogen applied

OR

b. Trap crop will be harvested for silage:

Triticale - Maximum of 70 lbs/ac. Rye - Maximum of 70 lbs/ac. Wheat - Maximum of 60 lbs/ac. Barley - Maximum of 50 lbs/ac.

OR

c. Trap crop will be harvested for grain - Follow recommendations in table below. **Warning** - Using maximum N rates listed in table below may cause lodging of crop when a high rate of Nitrogen was applied in the Fall.

(Feb Early March)	Tiller Count:	N Recommendation
Single Application:	<70/sq. ft.	80 lbs/acre-Feb.(Growth Stage 25)
	>100; plants dark green; tissue N levels >3.75%	30-40 lbs/acre-late March (Zadoks Growth Stage 30)
Split Application:		
February (Zadoks	<60/sq. ft.	60 lbs N/acre
Growth Stage 25)	60-100/sq. ft.	40 lbs N/acre
	>100/sq. ft. and dark green color	none; tissue test at growth stage 30
March (growth stage 30 tissue test)		No more than 120 lbs N/acre - <u>total of Growth Stages 25</u> and 30

Rye Grown for Grain

- 1. Soil productivity groups are the same as for wheat and barley
- 2. Nitrogen recommendations:
 - a. At planting 25-30 lbs N/acre
 - b. Late winter a single application made in February
 (1) For grain production 45 lbs N/acre

Soil Test Level	Nutrient Recommendations	
	(lbs/ac)	
	P_2O_5	<u>K₂O</u>
L	80-120	8 <u>0 -12</u> 0
Μ	40 - 80	40 - 80
Н	20 - 40	20 - 40
VH	0	0

Small Grain for Silage

- 1. Soil productivity groups same as for wheat and barley
- 2. Nitrogen recommendations:
 - a. At planting 0-30 lbs N/acre
 - use lower rate on fields, which will be timely planted, with a history of frequent manure applications, and good growing conditions are expected 10 days after planting.
 - b. Late winter a single application made in February
 - (1) Triticale, Rye, Wheat silage production 40-90 lbs N/acre
 - (2) Barley silage production 40-70 lbs N/acre
 - (a) Preferred application period would be after green-up occurs and before first joint has emerged.
 - (b) Use lower rates on field which are well established, have dark green color, and a history of lodging.

Soil Test Level	Nutrient Recom	mendations	
	(lbs/ac)		
	P_2O_5	K₂O	
L	8 <u>0 -12</u> 0	80 <u>-12</u> 0	
Μ	40 - 80	40 - 80	
Н	20 - 40	20 - 40	
VH	0	0	

Wheat and Barley for Grain - Nitrogen Management Applications

Standard/Intensive

- 1. At planting:
 - a. With NO₃⁻ soil test from top 6 inches measuring above 30 ppm, no nitrogen needed at planting.
 - b. If soil test is below 30 ppm, apply 15-30 pounds of nitrogen.
 - c. Without NO₃ soil test results:
 - Conventional tillage: broadcast and incorporate 1-2 inches, 25-30 lbs N/acre during land preparation for planting. Reduce N application if high residual N levels are expected.
 - (2) No-till: broadcast 30-40 lbs N/acre shortly before planting, if heavy residue (60% or greater cover) is present. Follow N recommendations for conventional planting if light residue (less than 60% cover) or no residue is present.

Intensive Management Only

2. Midwinter (December-January)

lf:

- a. Significant leaching rains have occurred during the October-December period, i.e., two or more rainfall events of 2.0 inches or more, and
- b. there has been very little tiller development, i.e., less than 3 tillers per plant, and the crop has a pale green color, and
- c. there is an expectation of several days during January and February when maximum daily temperature will exceed 50⁰F; **apply:** 30 lbs N/acre as a topdress.

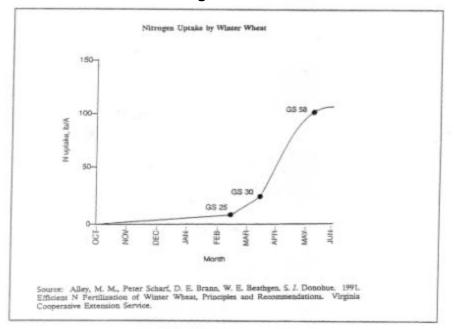


Figure 5-1

Management of Spring Nitrogen

- 3. Late Winter (February-early March)
 - a. Single Spring application of N, (Standard management):
 - (1) Fields with less than 70 tillers per sq.ft., **apply** 80 lbs/acre in February. Fertilize those fields with less than 60 tillers per sq.ft. first.

OR

(2) Fields with 70 to 100 tillers per sq.ft., and plants are pale green and tissue test levels are lower than 3.75%, **apply:** 60 lbs/acre in February.

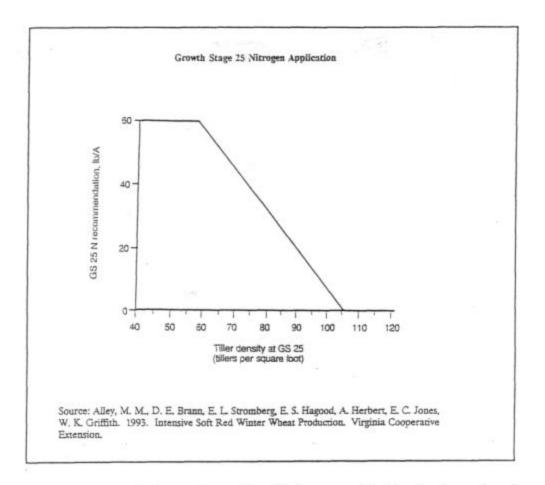
OR

Fields have 70 to 100 tillers per sq.ft., plants are dark green and N tissue test levels are 3.75% or higher, **apply:** 30-40 lbs/acre in late March (Zadoks growth stage 30.)

OR

- (3) Fields have more than 100 tillers per sq.ft., plants are dark green and tissue test levels are 3.75% or higher **apply:** 30-40 lbs/acre in late March (Zadoks growth stage 30.)
- b. Split applications of Spring N (Intensive small grain management):
 - (1) February (Zadoks growth stage 25.)
 - (a) Fields with less than 60 tillers per sq. ft. apply 60 lbs N/acre.

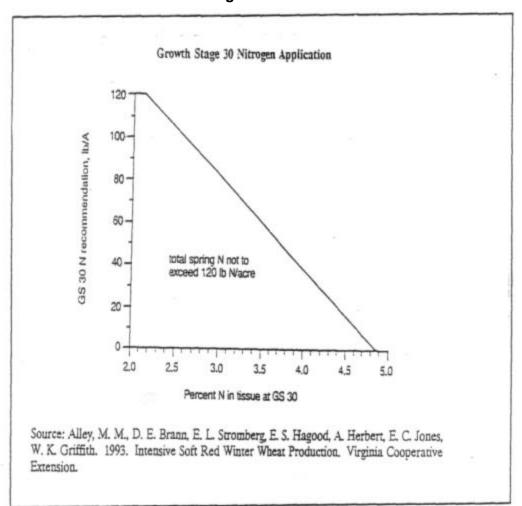
OR


(b) Fields with 60 to 100 tillers per sq. ft. - apply 40 lb N/acre.

OR

(c) Fields with more than 100 tillers per sq. ft. and the crop has a good green color - do not apply nitrogen at this time. Tissue test at Zadoks growth stage 30 to determine N application needs.

Use Figure 5-2 for more detailed nitrogen application rates based on exact tiller counts.


Figure 5-2

To determine the rate for the growth stage 25 application, one needs to determine the number of tillers per square foot in the field. If there are less than 60 per square foot, apply 60 pounds per acre at growth stage 25. If there are between 60 and 100 tillers, determine the rate from Figure 5-2. If there are more than 100 tillers per square foot and the crop has a dark green color, do not apply any nitrogen at this time.

(Spring N management continued on next page)

- (2) March (Zadoks growth stage 30).
 - (a) N application rate for wheat based on the % N in a plant tissue sample taken at Zadoks growth stage 30 using Fig. 5-3. **NOTE:** Observations have shown that barley topdress rate should be decreased by 0.5% N.

Nitrogen Application Recommendations for Wheat and Barley (Summary)

SEASON	APPLICATION CRITERIA	N RECOMMENDATION
I. Planting	Nitrate Soil Test	
	>30 ppm (top 6 inches)	None
	<30 ppm (top 6 inches)	Apply 15-30 lbs N
	None	Conventional Tillage-broadcast & incorporate to 1-2 inches, 25- 30 lbs N/acre; No-Till-broadcast 25-30 lb N/acre
II. Midwinter (DecJanuary)		
Precipitation	2 or more rainfalls >2.0 inches AND	
Tiller Development	<3 tillers per plant; pale green AND	
Max. Daily Temp.	>50 ⁰ F	THEN: Apply 30 lbs N/acre topdressed
III. Late Winter (Feb. 눦 Early March)	Tiller Count:	
Single Application:	<70/sq. ft.	80 lbs/acre-Feb.(Growth Stage 25)
	>100; plants dark	30-40 lbs/acre- late March
Split Application:	green; tissue N levels >3.75%	(Zadoks Growth Stage 30)
February (Zadoks	<60/sq. ft.	60 lbs N/acre
Growth Stage 25)	60-100/sq. ft.	40 lbs N /acre
	>100/sq. ft. and dark green color	none; tissue test at growth stage 30
March (growth stage 30 tissue test)	Refer to Figure 5-3 for N rates based on tissue test	No more than 120 lbs N/acre - total of Growth Stages 25 and <u>30</u>

Phosphorus and Potassium Recommendations (Standard/Intensive Small Grain Management)

Soil Test Level	Nutrient Recommendations	
	(lbs/ac)	
	P_2O_5	K₂O
L	80 <u>– 1</u> 20	80 — 120
Μ	40 - 80	40 – 80
Н	20-40	20 – 40
VH	0	0

Canola

Nitrogen Fertilization:

- 1. Apply 30 40 lb N/A at planting time. Broadcast and disc-in before planting.
- 2. Apply 90 120 lb N/A in late February just before spring growth begins. For soils which are a High environmental risk for nitrogen loss, the late winter application should be split with the first 45 to 60 lbs/ac being applied in late February and the second 45 to 60 lbs/ac being applied 4 weeks later.

Soil Test Level	Nutrient Recom	mendations	
	(lbs/ac)		
	P_2O_5	<u>K₂O</u>	
L	80 -120	80 -120	
Μ	40 - 80	40 - 80	
Н	20 - 40	20 - 40	
VH	0	0	

Peanuts

Phosphorus and Potassium Recommendations:

The phosphorus and potassium recommended for peanuts can be applied at the same time the crop preceding peanuts in the rotation is fertilized. If not applied at that time, it should be plowed down before peanuts are planted.

Soil Test Level	Nutrient Recom	mendations	
	(lbs/ac)		
	P_2O_5	K₂O	
L	100-200	8 <u>0 -12</u> 0	
Μ	55 – 85	0	
Н	0 - 40	0	
VH	0	0	

* Apply 40 lbs/A at H-. No P₂0₅ recommended at H and H+.

Cotton

Nitrogen Recommendations:

The planned rate of total nitrogen application should take into consideration the crop that cotton will be following and the soil on which it will be grown. The following suggestions consider both:

	Soil Management Groups on Which Cotton Will Be Grown	Total N Application Lbs/Acre
l.	A, AA, B, C, E, J, K	50-60
Ш.	F, Q, R, S, T, DD, II	60-90
III.	N, O, V, X	50-70
IV.	IV. Soil Management Groups that are not suited for cotton production: P, Z, BB, CC, EE, FF, HH, JJ, KK, LL, MM, NN, OO, PP, QQ.*	
V.	Soil Management Groups on which cotton M, U, W, Y, GG.	will not be grown: D, G, H, I, J, L,

* "Soils in this field are not suited for cotton production. If at all possible, select another field, but if cotton will be grown, apply 50-70 lbs of N per acre."

Reduce the planned rate of nitrogen application by 10 pounds per acre if cotton will be following soybeans and by 20 pounds per acre if it will follow peanuts.

Timing of Nitrogen Application

Only about 20 percent of the total nitrogen uptake will have occurred by early square formation (approximately 45 days after planting). To avoid possible stimulation of excessive vegetative growth and loss of unneeded nitrogen through leaching, apply only one third of the planned nitrogen application rate at planting. The most effective method of application of this nitrogen is in a starter fertilizer which would also supply 20 to 40 pounds of P_2O_5 depending upon P_2O_5 needs as shown by a soil test. This can be done by using either a 1:1:0 ratio fertilizer such as 15-15-0, a 1:2:0 ratio fertilizer such as 18-46-0 or a 1:3:0 fertilizer such as 10-34-0. Use of a starter fertilizer has been shown to stimulate the early growth rate and increase lint cotton yields by 60 to 100 pounds per acre, both of which are desirable.

The preferred placement of this starter fertilizer is two inches to one side of the seed and at least as deep as the seeds are planted but preferably one to two inches below seed level. Placing the starter fertilizer in the row behind the subsoiler shank while ripping under the row has also been shown to be an effective placement. However, applying the starter fertilizer in a 3 to 4 inch wide band on the soil surface in front of the press wheel has not proven to be an effective placement method in research conducted in North Carolina.

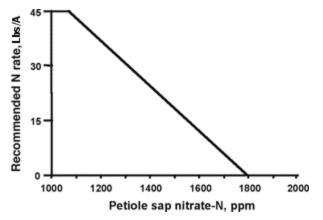
The remainder of the planned nitrogen application can be applied at first square formation (approximately 45 days after planting).

(Phosphorus and Potassium recommendations on next page)

Cotton (cont.)

Soil Test Level	Nutrient Recommendations (Ibs/ac)	
	P ₂ O ₅	
L	8 <u>0 – 1</u> 20	8 <u>0 -1</u> 20
Μ	40 - 80	40 - 80
Н	20 - 40	20 - 40
VH	0	0

White Potatoes - All Soil Productivity Groups


Soil Test Level	Nutrient Recommendations (lbs/ac)		
	Ν	P_2O_5	K₂O
L-	125 -1 50*	200	300
L	125-150*	200	300
L+	125-150*	200	300
M-	125-150*	150	200
Μ	125-150*	150	200
M+	125-150*	150	200
H-	125-150*	100	100
Н	125-150*	100	100
H+	125-150*	100	100
VH	125-150*	<u>30**</u>	<u>50</u>

- * Nitrogen recommendation for yields up to 250 cwt/acre. Split apply nitrogen with 1/3 of the rate applied at planting and remaining 2/3 to be applied 1-2 weeks after emergence.
- ** For phosphorus soil test levels exceeding 65% saturation, no phosphorus application shall be made to the field, including starter.

When documented yields for the field (average of the high 3 yields in the last 5 years) indicate an expected yield of greater than 250 cwt/acre use .6 (six-tenths) X the expected tuber yield (cwt/ac) to determine the nitrogen recommendation. At this higher nitrogen recommendation, use a three way split as follows, 1/6 -1/3 of the total recommendation at planting, 1/2 to 2/3 of the total recommendation at emergence, and 1/6 of the total recommendation at flowering. The combination of nitrogen applications applied before flowering shall not exceed 5/6 of the total nitrogen need when using this program.

For more efficient nitrogen management application at flowering apply the remaining nitrogen from the the 3-way nitrogen split, or use the figure below showing petiole sap concentrations at flowering to adjust nitrogen application rate.

Figure 5-4 White Potatoe Petiole Sap Nitrate before Flowering

Note: At greater than 1500 ppm, response to addition nitrogen is unlikely.

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	P_2O_5	K₂O
L-	70*	120	120
L	70*	110	110
L+	70*	100	100
M-	70*	90	90
М	70*	80	80
M+	70*	70	70
H-	70*	60	60
Н	70*	50	50
H+	70*	40	40
VH	70*	0	0

Sudangrass, Sudan-Sorghum Hybrids and Millet Plantings

* The N recommendation is for application at planting. If additional pasture, hay, silage production is desired, apply 40-60 lbs/A N after each cutting, or 30-40 lbs/A N after each grazing. Do not apply more than 130 lbs/A N per year.

Alfalfa and Alfalfa-Orchardgrass Establishment

Soil Test Level	Nutrient Recommendations		
	<u>(lbs/a</u>	ac)	
	P_2O_5	<u>K₂O</u> 170	
L-	170	170	
L	160	160	
L+	150	150	
M-	140	140	
Μ	130	130	
M+	120	120	
H-	110	110	
Н	80	80	
H+	50	50	
VH	0	0	

Alfalfa and Alfalfa-Grass Hay Maintenance, Soil Productivity Group I

Soil Test Level	Nutrient Recommendations		
	<u>(lbs/ac)</u>		
	<u>P₂O₅</u>	<u>K₂O</u>	
L-	120	450*	
L	110	420*	
L+	100	390*	
M-	90	360*	
Μ	80	330*	
M+	70	300*	
H-	60	210*	
Н	50	120	
H+	40	40	
VH	0	0	

*For K_2O rates greater than 200 lbs/ac, split the application, applying 1/2 in the fall and 1/2 in the spring. (Alternate recommendation where field sampled in spring - apply 1/2 in early spring, and 1/2 after the first cutting).

Soil Test Level	Nutrient Recommendations		
	(lbs/ac	:)	
	P_2O_5	<u>K₂O</u>	
L-	120	<u>K₂O</u> 330*	
L	110	300*	
L+	100	280*	
M-	90	270*	
Μ	80	245*	
M+	70	220*	
H-	60	200	
Н	50	120	
H+	40	60	
VH	0	0	

Alfalfa and Alfalfa-Grass Hay Maintenance, Soil Productivity Group II

* For K₂O rates greater than 200 lbs/ac, split the application, applying 1/2 in the fall and 1/2 in the spring. (Alternate recommendation where field sampled in spring - apply 1/2 in early spring, and 1/2 after the first cutting).

Alfalfa and Alfalfa-Grass Hay Maintenance, Soil Productivity Group III

Soil Test Level	Nutrient Recommendations		
	(lbs/ac)		
	P_2O_5	<u>K2</u> O	
L-	90	<u>K20</u> 240*	
L	80	220*	
L+	70	200	
M-	60	185	
Μ	50	170	
M+	40	160	
H-	40	145	
Н	40	90	
H+	40	40	
VH	0	0	

• For K₂O rates greater than 200 lbs/ac, split the application, applying 1/2 in the fall and 1/2 in the spring. (Alternate recommendation where field sampled in spring - apply 1/2 in early spring, and 1/2 after the first cutting).

Red Clover-Orchardgrass,	Orchardgrass/Fescue-Ladino Clover, Orchardgrass
and Fescue Establishment	

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	<u>K2</u> O
L-	40*	170	170
L	40*	160	160
L+	40*	150	150
M-	40*	140	140
Μ	40*	130	130
M+	40*	120	120
H-	40*	110	110
Н	40*	75	75
H+	40*	40	40
VH	40*	0	0

* Apply the nitrogen at the time the grass is seeded in late summer, early fall or early spring. Overseed the grass with clover the following February.

Red Clover-Grass Hay Maintenance, Soil Productivity Groups I, II

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	K₂O
L-	0	120	240
L	0	110	220
L+	0	100	200
M-	0	90	185
Μ	0	80	170
M+	0	70	160
H-	0	60	145
Н	0	50	90
H+	0	40	40
VH	0	0	0

Red Clover-Grass Hay Maintenance, Soil Productivity Groups III, IV

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	K₂O
L-	0	90	145
L	0	80	130
L+	0	70	120
M-	0	60	110
Μ	0	50	95
M+	0	40	85
H-	0	40	75
Н	0	40	55
H+	0	40	40
VH	0	0	0

Soil Test Level	Nutrient Recommendations (Ibs/ac)		
	N	P_2O_5	K ₂ O
L-	60- <u>1</u> 00*	120	120
L	60-100*	110	110
L+	60-100*	100	100
M-	60-100*	90	90
Μ	60-100*	80	80
M+	60-100*	40	40
H-	60-100*	0	0
Н	60-100*	0	0
H+	60-100*	0	0
VH	60-100*	0	0

Stockpiled Tall Fescue, Soil Productivity Groups I, II

* Remove animals by early August and apply the N between August 1-15. Keep animals off pasture until November to allow stand to mature. Where clover makes up more than 25% of the stand, use the 60 lb N rate. If clover is not present and you desire maximum production, apply the 100 lb N rate.

Stockpiled Tall Fescue, Soil Productivity Groups III, IV

Soil Test Level	Nutrient Re	Nutrient Recommendations (lbs/ac)		
	N	P_2O_5	K ₂ O	
L-	50 -8 0*	60	80	
L	50-80*	50	70	
L+	50-80*	40	60	
M-	50-80*	30	50	
Μ	50-80*	30	40	
M+	50-80*	30	30	
H-	50-80*	0	0	
Н	50-80*	0	0	
H+	50-80*	0	0	
VH	50-80*	0	0	

* Remove animals by early August and apply the N between August 1-15. Keep animals off pasture until November to allow stand to mature. Where clover makes up more than 25% of the stand, use the 50 lb N rate. If clover is not present and you desire maximum production, apply the 80 lb N rate.

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	<u>K₂O</u>
L-	0*	120	120
L	0*	110	110
L+	0*	100	100
M-	0*	90	90
Μ	0*	80	80
M+	0*	40	40
H-	0*	0	0
Н	0*	0	0
H+	0*	0	0
VH	0*	0	0

Orchardgrass/Fescue-Clover Pastures, Soil Productivity Groups I, II

* If stand contains less than 25% clover, apply 50-80 lbs/A of N.

If additional production is needed later on, apply 40 to 60 lbs/A of N in late summer.

If you are planning to overseed a legume into the stand, do not apply any N.

If organic nutrient sources are utilized, up to 120 lbs of N may be applied if the application is no more frequent than once every 2 years.

Soil Test Level	Nutrient Recommendations (lbs/ac)			
	N	<u>P₂O₅</u>	<u>K₂O</u>	
L-	0*	60	80	
L	0*	50	70	
L+	0*	40	60	
M-	0*	30	50	
Μ	0*	30	40	
M+	0*	30	30	
H-	0*	0	0	
Н	0*	0	0	
H+	0*	0	0	
<u>VH</u>	<u>0*</u>	<u>0</u>	<u>0</u>	

Orchardgrass/Fescue-Clover Pastures, Soil Productivity Groups III, IV

* If stand contains less than 25% clover, apply 40-60 lbs/A of N.

If additional production is needed later on, apply 40 to 60 lbs/A of N in late summer.

If you are planning to overseed a legume into the stand, do not apply any N.

If organic nutrient sources are utilized, up to 100 lbs of N may be applied if the application is no more frequent than once every 2 years.

Soil Test Level	Nutrient Recommendations (lbs/ac)			
	N	<u>P₂O₅</u>	K₂O	
L-	0*	200	200	
L	0*	175	175	
L+	0*	150	150	
M-	0*	125	125	
Μ	0*	100	100	
M+	0*	75	75	
H-	0*	0	0	
Н	0*	0	0	
H+	0*	0	0	
VH	0*	0	0	

Native or Unimproved Pastures, Soil Productivity Groups I, II

* If stand contains less than 25% clover, apply 40-60 lbs/A of N.

For phosphorus + potassium application once each three or four years. If you are planning to overseed a legume into the stand, omit the N application.

Native or Unimproved Pastures, Soil Productivity Groups III, IV

Soil Test Level	Nutrient Recommendations (lbs/ac)			
	N	$\underline{P_2O_5}$	<u>K₂O</u>	
L-	0*	120	120	
L	0*	110	110	
L+	0*	100	100	
M-	0*	90	90	
Μ	0*	80	80	
M+	0*	40	40	
H-	0*	0	0	
Н	0*	0	0	
H+	0*	0	0	
VH	0*	0	0	

* If stand contains less than 25% clover, apply 40-60 lbs/A of N.

For phosphorus + potassium application once each three or four years.

Soil Test Level	Nutrient Recommendations (lbs/ac)			
	N	<u>P₂O₅</u>	K₂O	
L-	80- <u>1</u> 00*	120	240	
L	80-100*	110	220	
L+	80-100*	100	200	
M-	80-100*	90	185	
Μ	80-100*	80	170	
M+	80-100*	70	160	
H-	80-100*	60	145	
Н	80-100*	50	90	
H+	80-100*	40	40	
VH	80-100*	0	0	

Orchardgrass/Fescue (Tall Grass) Hay Production, Soil Productivity Groups I, II

* The N recommendation is for a March application of commercial fertilizer.

If additional hay production is needed, apply 80 lbs N/acre after each cutting during the growing season. Use the number of cuttings to determine total nitrogen rate with a maximum annual rate not to exceed 250 lbs/acre per year.

Organic nutrient sources may be applied in one or more applications with the first application to be in March or April. If applied after 9/1, apply up to ½ the total nitrogen rate based on above criteria while crop is still actively growing, with the remaining rate not to be applied until after 3/1 of the following year. Any nitrogen application applied after 3/1 must be deducted from that year's nitrogen need and the balance may be applied evenly between cuttings.

Orchardgrass/Fescue (Tall Grass) Hay Production, Soil Productivity Groups III, IV

Soil Test Level	Nutrient Recommendations (lbs/ac)			
	N	<u>P₂O₅</u>	<u>K₂O</u>	
L-	60 - 80*	90	145	
L	60-80*	80	130	
L+	60-80*	70	120	
M-	60-80*	60	110	
Μ	60-80*	50	95	
M+	60-80*	40	85	
H-	60-80*	40	70	
Н	60-80*	40	55	
H+	60-80*	40	40	
VH	60-80*	0	0	

* N recommendation is for a March application of commercial fertilizer.

For additional fall hay production apply 60-80 lbs N/acre in late August/early September. Do not apply more than 160 lbs N/acre/year.

Organic nutrient sources may be applied in one or more applications with the first application to be in March or April. If applied after 9/1, apply up to ½ the total nitrogen rate based on above criteria while crop is still actively growing, with the remaining rate not to be applied until after 3/1 of the following year. Any nitrogen application applied after 3/1 must be deducted from that year's nitrogen need and the balance may be applied evenly between cuttings.

Bermudagrass Establishment

Soil Test Level	Nutrient Recommendations (lbs/ac)			
	N	<u>P₂O₅</u>	<u>K₂O</u>	
L-	70	120	120	
L	70	110	110	
L+	70	100	100	
M-	70	90	90	
Μ	70	80	80	
M+	70	70	70	
H-	70	60	60	
Н	70	50	50	
H+	70	40	40	
VH	70	0	0	

Bermudagrass Pastures - Soil Productivity Groups I, II

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	<u>K2</u> O
L-	175-225*	120	120
L	175-225*	110	110
L+	175-225*	100	100
M-	175-225*	90	90
Μ	175-225*	80	80
M+	175-225*	40	40
H-	175-225*	0	0
Н	175-225*	0	0
H+	175-225*	0	0
VH	175-225*	0	0

* The N recommendation represents the total amount of N to be applied during the season. Split the N into three applications - April, June and July.

Organic nutrient sources may be applied in one or more applications. If applied after 7/1, apply up to ½ the total nitrogen rate based on above criteria while crop is still actively growing up to 9/15, with the remaining rate not to be applied until after 4/1 of the following year. Any nitrogen application applied after 4/1 must be deducted from that year's nitrogen need and the balance may be applied evenly between cuttings.

Bermudagrass Pastures - Soil Productivity Groups III, IV, V**

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O</u> ₅	<u>K₂O</u>
L-	120 - 180*	120	120
L	120-180*	110	110
L+	120-180*	100	100
M-	120-180*	90	90
Μ	120-180*	80	80
M+	120-180*	40	40
H-	120-180*	0	0
Н	120-180*	0	0
H+	120-180*	0	0
VH	120-180*	0	0

- * The N recommendation represents the total amount of N to be applied during the season. Split the N into three applications April, June and July.
- ** Use the lower end of range for Group V soils.

Organic nutrient sources may be applied in one or more applications. If applied after 7/1 apply up to ½ the total nitrogen rate based on above criteria while crop is still actively growing up to 9/15, with the remaining rate not to be applied until after 4/1 of the following year. Any nitrogen application applied after 4/1 must be deducted from that year's nitrogen need and the balance may be applied evenly between cuttings.

Bermudagrass Hay Production, Soil Productivity Groups I, II (Use Tall Grass Productivity Group)

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	P_2O_5	<u>K₂O</u>
L-	240 -3 00*	120	275
L	240-300*	110	255
L+	240-300*	100	235
M-	240-300*	90	225
Μ	240-300*	80	205
M+	240-300*	70	185
H-	240-300*	60	165
Н	240-300*	50	100
H+	240-300*	40	40
VH	240-300*	0	0

* Total application of N should be divided equally between an early April application and applications made after the first and second harvests.

Organic nutrient sources may be applied in one or more applications. If applied after 7/1, apply up to ½ the total nitrogen rate based on above criteria while crop is still actively growing up to 9/15, with the remaining rate not to be applied until after 4/1 of the following year. Any nitrogen application applied after 4/1 must be deducted from that year's nitrogen need and the balance may be applied evenly between cuttings.

Bermudagrass Hay Production, Soil Productivity Groups III, IV, V** (Use Tall Grass Productivity Group)

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	<u>K₂O</u>
L-	210 - 260*	120	275
L	210-260*	110	255
L+	210-260*	100	235
M-	210-260*	90	225
Μ	210-260*	80	205
M+	210-260*	70	185
H-	210-260*	60	165
Н	210-260*	50	100
H+	210-260*	40	40
VH	210-260*	0	0

- * Total application of N should be divided equally between an early April application and applications made after the first and second harvests.
- ** Use the lower end of range for Group V soils.

Organic nutrient sources may be applied in one or more applications. If applied after 7/1 apply, up to ½ the total nitrogen rate based on above criteria while crop is still actively growing up to 9/15, with the remaining rate not to be applied until after 4/1 of the following year. Any nitrogen application applied after 4/1 must be deducted from that year's nitrogen need and the balance may be applied evenly between cuttings.

Annual Ryegrass Hay Production, Soil Productivity Groups I and II (Use Tall Grass Productivity Group)

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	<u>K₂O</u>
L-	40-50*	120	240
L	40-50*	110	220
L+	40-50*	100	200
M-	40-50*	90	185
М	40-50*	80	170
M+	40-50*	70	160
H-	40-50*	60	145
Н	40-50*	50	90
H+	40-50*	40	40
VH	40-50*	0	0

* The above N rates are recommended at seeding during the Fall. For additional production 30-40 lbs/ac of N should be added after each grazing, not to exceed160 lbs/ac annually. For hay production 40-60 lbs/ac N after each cutting, not exceed 200 lbs/ac annually.

Annual Ryegrass Hay Production, Soil Productivity Groups III and IV (Use Tall Grass Productivity Group)

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	K₂O
L-	40-50*	90	145
L	40-50*	80	130
L+	40-50*	70	120
M-	40-50*	60	110
Μ	40-50*	50	95
M+	40-50*	40	85
H-	40-50*	40	75
Н	40-50*	40	55
H+	40-50*	40	40
VH	40-50*	0	0

* The above N rates are recommended at seeding during the Fall. For additional production 30-40 lbs/ac of N should be added after each grazing, not to exceed 140 lbs/ac annually. For hay production 40-60 lbs/ac N after each cutting, not exceed 180 lbs/ac annually.

Prairie Grass (Matua) Hay Production, Soil Productivity Groups I and II (Use Tall Grass Productivity Group)

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	<u>K₂O</u>
L-	80-100*	120	330
L	80-100*	110	300
L+	80-100*	100	280
M-	80-100*	90	270
Μ	80-100*	80	245
M+	80-100*	70	220
H-	80-100*	60	200
Н	80-100*	50	120
H+	80-100*	40	60
VH	80-100*	0	0

* The N recommendation is for a March application. Apply 40-60 lbs/A after hay or silage cutting. Do not exceed 300 lbs/A per year for hay. When pastured after hay harvest, apply 30-40 lbs/ac after each grazing. Do not exceed 200 lbs/A per year for intensive rotational grazing.

Prairie Grass (Matua) Hay Production, Soil Productivity Groups III and IV (Use Tall Grass Productivity Group)

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	$\underline{P_2O_5}$	<u>K₂O</u>
L-	60-80*	120	240
L	60-80*	110	220
L+	60-80*	100	200
M-	60-80*	90	185
Μ	60-80*	80	170
M+	60-80*	70	160
H-	60-80*	60	145
Н	60-80*	50	90
H+	60-80*	40	40
VH	60-80*	0	0

* The N recommendation is for a March application. Apply 40-60 lbs/A after hay or silage cutting. Do not exceed 250 lbs/A per year for hay. When pastured after hay harvest, apply 30-40 lbs/ac after each grazing. Do not exceed 180 lbs/A per year for intensive rotational grazing.

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	<u>K₂O</u>
L-	0	70	80
L	0	60	60
L+	0	50	40
M-	0	50	40
Μ	0	30	25
M+	0	10	10
H-	0	0	0
Н	0	0	0
H+	0	0	0
VH	0	0	0

Hardwood and Pine Plantation Establishment - All Soil Productivity Groups

Phosphorus and potassium are best applied by incorporation before planting, but may be banded along the planting rows. Any lime needed is also best incorporated before planting.

Hardwood Maintenance – All Soil Productivity Groups

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	P_2O_5	<u>K₂O</u>
L-	50-100*	70	80
L	50-100*	60	60
L+	50-100*	50	40
M-	50-100*	50	40
Μ	50-100*	30	25
M+	50-100*	10	10
H-	50-100*	0	0
Н	50-100*	0	0
H+	50-100*	0	0
VH	50-100*	0	0

* Nitrogen applications should begin when hardwoods are at least 5 inches in diameter with subsequent applications no more frequently than once every of five years thereafter. Soil tests should be taken prior to nitrogen application to determine phosphorus and potassium rates, if needed.

Control of competing vegetation within the stand is essential so that nutrients remain available for tree production.

Soil Test Level	Nutrient R	Nutrient Recommendations (lbs/ac)		
	N	$\underline{P}_{2}\underline{O}_{5}$	<u>K₂O</u>	
L-	50-100*	70	80	
L	50-100*	60	60	
L+	50-100*	50	40	
M-	50-100*	50	40	
Μ	50-100*	30	25	
M+	50-100*	10	10	
H-	50-100*	0	0	
Н	50-100*	0	0	
H+	50-100*	0	0	
VH	50-100*	0	0	

Pine Maintenance – All Soil Productivity Groups

- Nitrogen rates are for a single application to be applied 5 to 8 years before harvest.
 *Lower coastal plain pine stands <u>only</u>, may receive a one time nitrogen application at ages from 3 to 10 years.
- ** Soil tests should be taken prior to nitrogen application to determine phosphorus and potassium rates, if needed.

Control of competing vegetation within the stand is essential so that nutrients remain available for tree production.

Loblolly Pine Maintenance, One time Nitrogen Applications -All Soil Productivity Groups

For established stands 10-25 years old, on low to medium fertility soils, a one time application of an organic nutrient source may be made at a Nitrogen rate not to exceed 200 lbs/acre of plant available nitrogen.

For established stands less than 10 years old and that have achieved canopy closure, a one time application of an organic nutrient source may be made at a nitrogen rate not to exceed 100 lbs/acre of plant available nitrogen.

Christmas Trees - Establishment (broadcast before planting) White Pine, Virginia Pine, Scotch Pine

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	<u>K₂O</u>
L-	100-120	150	160
L	100-120	120	130
L+	100-120	90	100
M-	100-120	90	100
Μ	100-120	65	75
M+	100-120	40	50
H-	100-120	40	50
Н	100-120	30	40
H+	100-120	30	30
VH	100-120	0	0

Christmas Trees – Establishment (broadcast before planting) Fraser Fir, Norway Spruce, Hemlock, Blue Spruce, Red Cedar

Soil Test Level	Nutrient Recommendations (lbs/ac)		
	N	<u>P₂O₅</u>	<u>K₂O</u>
L-	100-120	300	250
L	100-120	230	200
L+	100-120	160	150
M-	100-120	160	150
Μ	100-120	110	105
M+	100-120	60	60
H-	100-120	60	60
Н	100-120	45	45
H+	100-120	30	30
VH	100-120	0	0

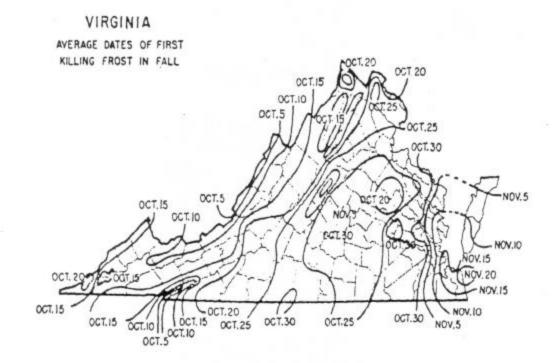
Christmas Trees – Maintenance

A nitrogen application of 50-60 lbs/acre should be made with the first Spring application to be made about 2 weeks before budbreak. A Fall application of 50-60 lbs/acre can be made anytime beginning in September but no later than the end of October.

Use the Fertilizer Recommendations table under **Establishment** for the appropriate rate for the specific species. Base P_2O_5 and K_2O applications on soil test results taken before planned maintenance applications.

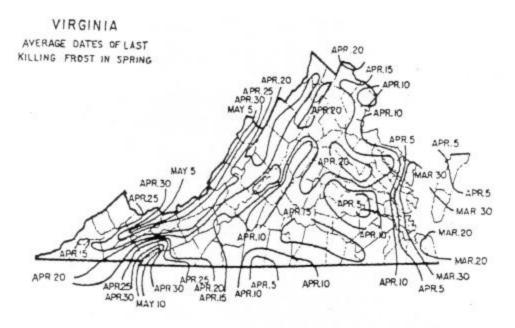
Maintenance fertilizer applications should be uniformly applied in 2- to 3- foot wide bands between the trees along the planted row

OR


For a rate per tree determine the fertilizer rate in ounces (lbs/ac X 16) then divide by the number of trees per acre. (100 lbs/ac of N X 16 ozs/lb = 1600 ozs. Then 1600 ozs \div no. of trees/ac = ozs/tree)

Section VI. Turfgrass Nutrient Recommendations for Home Lawns, Office Parks, Public Lands and Other Similar Residential/Commercial Grounds

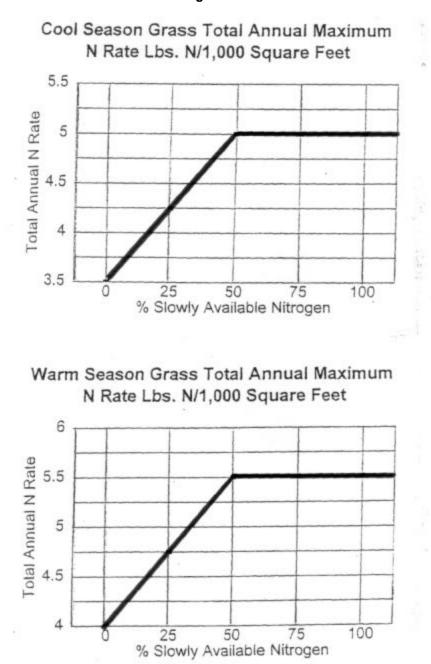
Recommended Season of Application For Nitrogen Fertilizers - Applies to all Turf


A nitrogen fertilization schedule weighted toward fall application is recommended and preferred for agronomic quality and persistence of cool season turfgrass; however, the acceptable window of applications is much wider than this for nutrient management. The nutrient management recommended application season for nitrogen fertilizers to cool season turfgrasses begins six weeks prior to the last spring average killing frost date and ends six weeks past the first fall average killing frost date (see Figures 6-1 & 6-2). Applications of nitrogen during the intervening late fall and winter period should be avoided due to higher potential leaching or runoff risk, but where necessary, apply no more than 0.5 pounds per 1,000 ft² of water soluble nitrogen. Higher application rates may be used during this late fall and winter period by using materials containing slowly available sources of nitrogen, if the water soluble nitrogen contained in the fertilizer does not exceed the recommended maximum of 0.5 pounds per 1,000 ft² rate. Do not apply nitrogen or phosphorus fertilizers when the ground is frozen.

The acceptable nitrogen fertilizer application season for non-overseeded warm season turfgrass begins no earlier than the last spring average killing frost date and ends no later than one month prior to the first fall average killing frost date (see Figures 6-1 & 6-2).

Figure 6-1

Per Application Rates


Do not apply more than one (1) pound of water soluble nitrogen per 1,000 ft² within a 30 day period. For applications of materials containing slowly available sources of nitrogen, higher application rates are acceptable if the water soluble nitrogen contained in the fertilizer does not exceed the maximum recommended rate for a 30 day period. Lower per application rates of water soluble nitrogen sources or use of slowly available nitrogen sources should be utilized on very permeable sandy soils, shallow soils over fractured bedrock, or areas near water wells.

Annual Application Rate

Up to 3.5 pounds per 1,000 ft² of nitrogen may be applied annually to cool season grass species or up to 4 pounds per 1,000 ft² may be applied annually to warm season grass species using 100 percent watersoluble nitrogen sources. Lower rates of nitrogen application may be desirable on those mature stands of grasses that require less nitrogen for long-term quality. As a result, lower application rates will probably be more suited to the fine leaf fescues (hard fescue, chewnings fescue, creeping red fescue, and sheeps fescue) and non-overseeded zoysiagrass. Lower rates should also be used on less intensively managed areas.

Use of Slowly Available Forms of Nitrogen

For applications of materials containing Slowly Available Nitrogen sources, total annual nitrogen application rates may be adjusted incrementally by referring to the following figure (maximum annual N rates when using 50% or greater Slowly Available Nitrogen [SAN] are 5.0 lbs/1000 ft² for cool season grasses, and 5.5 lbs/1000 ft² for warm season grasses):

Figure 6-3

Phosphorus and Potassium Recommendations (Etablished Turf)

Apply phosphorus (P_2O_5) and potassium (K_2O) fertilizers as indicated necessary by a soil test using the following guidelines:

Soil Test Level	pounds /1000 ft ² *	
	P ₂ O ₅	K₂O
L	2-3	2-3
Μ	1-2	1-2
Н	.5-1	.5-1
VH	0	0

* For the lower soil test level within a rating, use the higher side of the range and for higher soil test level within a rating use the lower side of the recommendation range.

Avoid the general use of high phosphorus ratio fertilizers such as 10-10-10 or 5-10-10, unless soil tests indicate phosphorus availability below the M+ level.

Recommendations for Establishment of Turf

These recommendations are for timely planted turfgrass, that is, the seed is planted at a time of the year when temperatures and moisture are adequate to establish a good stand of grass within one month of the planting date.

Nitrogen Applications

No more than 1 lb/1,000 ft² at planting, followed by one or two applications beginning 30 days after planting, not to exceed a total of 2 lbs/1,000 ft² total for the establishment period.

Phosphorus and Potassium Recommendations for Establishment

Soil Test Level	pounds /	pounds /1000 ft ² *	
	P ₂ O ₅	K ₂ O	
L	3-4	2-3	
Μ	2-3	1-2	
Н	2-1	.5-1	
VH	0	0	

* For the lower soil test level within a rating, use the higher side of the range and for higher soil test level within a rating use the lower side of the recommendation range.

Nitrogen Timing

The beginning and ending dates for application of nitrogen shall be determined using guidance and frost date maps contained in the Season of Application for Nitrogen section. Application dates listed in the table below are suggested and can be adjusted for specific areas of the state. Application intervals for nitrogen shall be at least 30 days to allow turf to utilize previous nitrogen applications.

Nutrient Recommendations for Golf Courses

	Maximum N Rate Per Application lbs/1,000 ft ²	Total Annual N Rate lbs/1,000 ft ²
Greens	.75	3-6
Tees	.75	2-5
Fairways	1	1-3
Roughs	1	0-1

Nitrogen Rates

Notes:

- Use of slowly available forms of Nitrogen is encouraged.
- Soluble N rates of 1/4 lb/1,000 ft² or less which may be a component of a pesticide or minor element application, may be applied any time during the application windows described in part 1 of this section, but must be considered with the total annual N application rate.
 Use higher rates for intensively used turf where rapid re-growth is required, lower rates for
- maintenance of lesser used areas, do not exceed total annual N levels as stated above.
- ◆ When overseeding warm season grasses, an additional 0.50-.75 lb/1,000ft² of Nitrogen may be applied in the Fall after perennial ryegrass overseeding is well established. An additional N application of 0.50 lb/1,000ft² may be made in Feb-March to over seeded perennial ryegrass if turf and color indicate need.

Nitrogen Management on Athletic Fields

This program is intended for those fields which are under heavy use with obvious need for nitrogen as part of an overall program to maintain turf quality.

Cool Seas	on Grasses	Bermuda Grass		
When to Apply*	Lbs/1,000 ft ² Nitrogen	When to Apply*	Lbs/1,000 ft ² Nitrogen	
August	1	April	1	
Sept - Oct	1	May 15 - June	1	
Nov	1	July - mid Aug	0.5 - 1*	
		Mid Aug - Sept	0.5 - 1**	
May 20 - June	05***	If overseeded Oct - Nov	.575****	

Notes:

- Total annual soluble N rate shall not exceed 3.5 lbs/1,000 ft² for cool season and 4 lbs/1,000 ft² for warm season grasses. Up to 1 lb/1,000 ft² may be applied from soluble N sources in any application.
- Use of slowly available forms of Nitrogen is encouraged.
- Soluble N rates of ¼ lb/1,000 ft² or less which may be a component of a pesticide or minor element application may be applied any time the turf is actively growing, but must be considered with the total annual N application rate.
- * Refer to frost date maps contained in the Season of Application for Nitrogen section.
- ** Use higher levels for intensively used turf where rapid regrowth is required, do not exceed annual N levels as stated above.
- *** Apply this application only if turf use warrants the maintenance for adequate growth and color.
- **** For warm season grasses, and additional 0.5. 0.75 lb/1,000ft² of Nitrogen may be applied in the Fall after perennial ryegrass overseeding is well established. Additional N application of 0.50 lb/1,000ft² may be made in Feb-March to overseeded perennial ryegrass if turf and color indicate need.

Phosphorus and Potassium Recommendations - Established Golf Courses and Athletic Fields.

Apply phosphorus (P_2O_5) and potassium (K_2O) fertilizers as indicated necessary by a soil test using the following guidelines:

Soil Test Level	pounds /1000 ft ² *			
	P_2O_5	K₂O		
L	2-3	2-3		
Μ	1-2	1-2		
Н	.5-1	.5-1		
VH	0	0		

* For the lower soil test level within a rating, use the higher side of the range and for higher soil test level within a rating use the lower side of the recommendation range.

Avoid the general use of high phosphorus ratio fertilizers such as 10-10-10 or 5-10-10, unless soil tests indicate phosphorus availability below the M+ level.

Other Turf Management Considerations

Lime Recommendations

Limestone applications should be recommended as necessary based on a soil test to maintain soil pH within an agronomic range for turfgrass.

For new seedings where lime is recommended, incorporate the lime into the top soil for best results.

Returning Grass Clippings

Recycling of clippings on turf should be encouraged as an effective means of recycling N, P, and K. Proper mowing practices that ensure no more than 1/3 of the leaf blade is removed in any cutting event will enhance turf appearance and performance when clippings are returned.

Use of Iron

Iron applications (particularly foliar applications) may periodically be used for enhanced greening as an alternative to nitrogen. These applications are most beneficial if applied in late spring through summer for cool season grasses and in late summer/fall applications for warm-season grasses.

Impervious Surfaces

Do not apply fertilizers containing nitrogen or phosphorus to impervious surfaces (sidewalks, streets, etc.). Remove any granular materials that land on impervious surfaces by sweeping and collecting, and either put the collected material back in the bag, or spread it onto the turf and /or using a leaf blower etc. to return the fertilizer back to the turfgrass canopy.

Section VII. Estimated Nitrogen Availability to Succeeding Crops From Legumes

Table	7-1
-------	-----

Estimated Nitrogen Availability to Succeeding Crops From Legumes

Сгор	% Stand	Description	Residual N (Lbs/ac)
Alfalfa	50-75	Good (>4 T/A)	90
	25-49	Fair (3-4 T/A)	70
	<25	Poor (<3 T/A)	50
Red Clover	>50	Good (>3 T/A)	80
	25-49	Fair (2-3 T/A)	60
	<25	Poor (<2 T/A)	40
Hairy Vetch	80-100	Good	100
	50-79	Fair	75
	<50	Poor	50
Peanuts	-	-	45
Soybeans	1/2 lb. N per bus	hel of yield, if previous yie	eld unknown, 20 lbs.

Section VIII. Manure Management

Method of Application	Semi- Solid Manure	Liquid Manure Slurry	Lagoon Liquid	Dry Litter
Injection	-	0.95	0.95	-
Broadcast with incorporation immediate	0.75	0.75	0.90	0.90
Incorporated after 2 days	0.65	0.65	0.80	0.80
Incorporated after 4 days	0.40	0.40	0.60	0.65
Incorporated after 7 days or no	0.25	0.25	0.45	0.50
incorporation				
Irrigation without incorporation	-	0.20	0.50	-

Table 8-1 Manure Ammonium Nitrogen Availability Coefficients

To utilize the table, the pounds of NH_4 -N per ton or 1000 gallons of manure is determined from a manure test. Multiply the NH_4 -N content of the manure by the availability coefficient in the table to obtain plant available nitrogen from the manure ammonium content.

Table 8-2 Coefficients for Organic N Availability in Manures¹

	Spring or Early ² Fall Applied	Winter Topdress/ Spring Residual ³	Perennial Grass		
Dairy Manure	.35	.20/.15	.35		
Poultry Manure	.60	.30/.30	.60		
Swine Manure	.50	.25/.25	.50		

- 1. Multiply the organic nitrogen content by the coefficient in the table to obtain expected available nitrogen.
- Manure applied in spring for summer annuals such as corn, or early fall (prior to December 1) for small grains.
- 3. Use the first coefficient to calculate Organic N released from manure applied in early winter on winter annuals such as rye, wheat, or barley as a topdressing, Use the second coefficient to calculate Organic N released the following Spring.

Table 8-3Manure Residual Factors for Previous Applications*

Historical Frequency of Manure Application on the Field	Residual <u>Factor</u>
Rarely Received Manure in Past (0-1 years in last 5)	0
Frequent Past Applications (2-3 out of 5 years)	0.10
Continuously Received Manure (4-5 out of 5 years)	0.20

- * The appropriate rate of manure to use in residual calculations is generally the average rate applied for years in which manure was land applied to the field.
- * Multiply the initial organic N content by the appropriate manure residual factor to obtain an estimate of residual nitrogen from past manure applications.
- * If more detailed manure history information is available, a residual availability of the initial organic nitrogen content of .12, .05, .02 may be used for one, two, and three years respectively following application.

Primary Nutrient Availability for Manures

Manure Phosphorus

Available P_2O_5 = Manure Analysis P_2O_5

If soils are testing M+ or above in phosphorus and the manure will supply enough phosphorus for the crop according to the formula Available P_2O_5 = Total P_2O_5 , no fertilizer phosphorus should be used due to unlikely crop response and water quality concerns.

For soils testing Medium or below, starter applications of fertilizer phosphorus should be made even if the manure contains sufficient phosphorus since it is contained in slow release organic forms. For soils testing low, higher levels of phosphorus starter fertilizer are recommended.

Manure Potassium

Available K_2O = Manure Analysis K_2O

Manure Type	TKN	NH ₄	P ₂ O ₅	K ₂ O	% Moisture
Liquid Dairy Slurry (518)*	19.22	8.88	9.08	17.35	94.60
Semi-Solid Dairy (167)	15.34	3.47	7.58	14.33	67.35
Semi-Solid Beef (47)	18.00	2.36	9.88	19.02	63.13
Dry Chicken Broiler Litter (937)	64.86	11.48	52.18	53.36	27.83
Dry Chicken Layer/Breeder (172)	47.87	8.51	60.79	43.68	29.49
Dry Turkey Litter (475)	62.03	13.05	50.23	38.31	28.64
Dry Turkey Breeder (62)	58.82	12.64	61.23	36.18	25.48
Liquid Swine Lagoon (250)*	7.20	5.66	2.81	12.23	99.35
Liquid Swine Pit (38)*	23.56	15.29	16.71	15.74	97.48

 Table 8-4

 Average Analysis for Manure Tested in Virginia

* Values presented in pounds/1000 gallons. All other values in pounds/ton.

The above table is a compilation of average values for Virginia manure samples from 2001 through 2004 analyzed by Clemson University Agricultural Service Lab. Numbers in parentheses indicate the number of samples analyzed for each category.

Table 8-5
Animal Manure Production Rates ¹

	Daily Man	ure Productio	n Per 1,000 lb	weight	
Animal	Animal Size	lbs.	cu. ft.	gals	% Dry Matter
Cattle					
Dairy	150 - 1,500	82	1.4	10.0	13
Beef	400 - 1,400	60	1.0	7.5	12
Veal	100 – 350	63	1.0	7.5	1.6
Swine					
Pigs	35 – 200	65	1.1	7.5	9
Gestation Sow	275	32	0.5	4.0	9
Sow and 8 pigs	375	88	1.4	10.6	9
Boar	350	31	0.5	4.0	9
Sheep	100	40	0.6	4.6	25
Horse	1,000	45	0.7	5.6	20
Poultry					
Poultry ² Liquid	-	300	-	-	5
Fresh, wet, sticky	-	61	-	-	25
and caked					
Moist crumbly to sticky	-	32	-	-	50
Crumbly	-	22	-	-	70
Dry	-	18	-	-	85

1. Does not include bedding, wash water, runoff water and other inputs which increase manure volume.

2. Storage losses already deducted.

Broiler houses generate approximately 1.25 tons of litter per 1000 birds during each cycle. Six cycles per year is average. Houses are cleaned out at variable intervals ranging from after each cycle to once every two years.

Turkey Tom production generates approximately 10 tons of litter per 1000 birds during each cycle for 4 cycles per year. Turkey hens produce about 8 tons per 1000 birds during each of 5 cycles per year.

Complete clean outs of poultry houses should be scheduled during spring or summer, consistent with the availability of a suitable crop for uptake of N, unless covered storage is available, to minimize water quality impacts and maximize agronomic efficiency.

 Table 8-6

 Annual Liquid Animal Waste Volume Available for Land Application

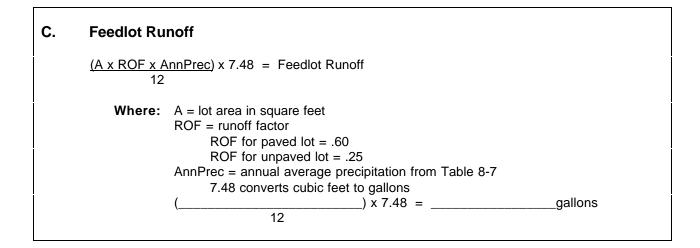
A. Manure Production

Animal Type	Ave. Wt*		Gal/Yr		# Animals		% Confined		Volume (Gals)
Feeder Swine		Х	2.74	Х		Х	·	=	
Sow & Litter		х	3.84	x		x	·	=	
Gestation Sow		x	1.46	x		х	·	=	
Boar		x	1.46	x		x	·	=	
Beef Cattle		x	2.74	x		х	·	=	
Dairy Cattle		x	3.65	x		x	·	=	
						_			

Subtotal Annual Manure Production _____

___ gallons

*Typical Weights					
	Lbs.			Lbs.	
Feeder Swine	145		Dairy Cat	tle	
Sow & Litter	375	Mature 1400			
Gestation Sow	275	Heifers	16-24 Mo	1050	
Boar	350		9-16 Mo	680	
Beef Cattle (Finishing)	1000		2-9 Mo	350	
		Calves	0-2 Mo	150	


B. Process Wastewater

Туре	# Animals		Gals. Per Day		365 Days/Yr.		Total Wastewater	
Dairy		x		_ x	365	= _	gal	s
Hogs		x		x	365	= _	gal	s
Other		x _		x	365	= _	gal	s

Dairy Cows Milked	Wastewater (Gal/Cow/Day)
0 - 50	5 - 8
50 - 150	4 - 6
150+	2 – 4

* Typical Wastewater — excludes flushing systems

Note: Most modern swine operations with lagoons use recirculated flush water for some of the production areas, therefore, when calculating process wastewater, you should consider only the clean water that is added during each flush.

D.	Net Precipitation	Excess Over Pit or Lagoon (Precipitation less Evaporation
	Lagoons:	NPE = Rainfall - (Lake Evaporation x .9)*
		NPE = (x) NPE =
	Pits:	NPE = Rainfall - (Lake Evaporation X .3)*
		NPE = (x) NPE =
		*See Table 8-7
		(SA x NPE) x 7.48 = Total NPE (gallons) 12
	where:	SA = surface area of pit or lagoon at the top, NPE = net precipitation excess as calculated above, 7.48 converts cubic feet to gallons
		() x 7.48 =gallons
	•	mal Waste Volume Produced = astewater + C. Feedlot Runoff + D. Net Precipitation Excess) gallons

Table 8-7Virginia Annual Normal Precipitation and Lake Evaporation

<u>County</u>	Annual Precip. Lal	ke Evaporation	County	Annual Precip. Lal	ke Evanoration
Accomack	42	38	Lancaster	42	39
Albemarle	42	36	Lee	50	33
	37	32	Loudoun	40	37
Allegheny					
Amelia	42	40	Louisa	42	38
Amherst	45	36	Lunenburg	42	40
Appomatox	40	38	Madison	41	36
Augusta	38	33	Mathews	43	40
Bath	41	32	Mecklenburg	42	41
Bedford	43	37	Middlesex	42	39
Bland	39	32	Montgomery	37	34
Botetort	42	34	Nelson	46	36
Brunswick	42	41	New Kent	44	40
Buchanan	42	31	Northampton	41	39
Buckingham	41	38	Northumberland		38
Campbell	38	38	Nottoway	42	40
Caroline	42	38	Orange	40	37
Carroll	41	35	Page	39	34
Charles City	42	40	Patrick	44	38
Charlotte	43	40	Pittsylvania	41	39
Chesapeake	48	40	Powhatan	40	40
Chesterfield	42	40	Prince Edward	41	40
Clarke	37	34	Prince George	42	40
Craig	38	32	Prince William	36	37
Culpeper	40	36	Pulaski	35	33
Cumberland	41	39	Rappahannock	40	35
Dickenson	42	32	Richmond	43	38
Dinwiddie	42	40	Roanoke	40	34
Essex	44	39	Rockbridge	38	34
Fairfax	42	37	Rockingham	34	33
Fauquier	40	36	Russell	45	31
Floyd	44	35	Scott	45	32
Fluvanna	39	38	Shenandoah	34	33
Franklin	43	38	Smyth	43	32
Fredrick	37	33	Southampton	45	41
Giles	35	32	Spotsylvania	40	38
Gloucester	43	40	Stafford	38	37
Goochland	40	39	Suffolk	47	40
Grayson	43	33	Surry	44	40
Greene	41	36	Sussex	44	40
Greenville	43	41	Tazewell	42	31
Halifax	42	40	Virginia Beach	46	40
Hanover	42	39	Warren	35	34
Henrico	43	40	Washington	45	32
Henry	44	39	Westmoreland	41	38
Highland	39	32	Wise	46	32
Isle of Wight	44	40	Wythe	37	32
James City	42	40	York	44	40
King & Queen	44	39			
King George	40	38			
King William	44	39			
			1		

Table 8-8 Maximum Wastewater Irrigation Application Rates for Different Soil Types

	%-5% Slope Inches per hour	
Soil Characteristics	Cover	Bare
Clay; very poorly drained	0.30	0.15
Silty Surface; poorly drained clay or claypan subsoil	0.40	0.25
Medium textured surface soil; moderate to imperfectly drained profile	0.50	0.30
Silt loam; loam, and very fine sandy loam; well to moderately well drained	0.60	0.40
Loamy sand, sandy loam or peat; well drained	0.90	0.60

Reduce hydraulic application rates on sloping ground:

Slope	Application Rate Reduction
0% - 5%	0%
6% - 8%	20%
9% -12%	40%
13% -20%	60%
Over 20%	75%

<u>Caution</u>: Check application rates to insure that desired nutrient levels are not exceeded, use the most restrictive criteria.

Do not irrigate wastewater to sites where soil moisture will exceed field capacity immediately following irrigation. Field capacity is defined as the amount of water held in the soil after the excess gravitational water has drained away and after free drainage has practically ceased.

Allow sufficient drying time between subsequent irrigations so that field capacity is not exceeded due to the irrigation events.

Source: Pennsylvania Department of Environmental Resources, 1990. "Assessment of Field Manure Nutrient Management."

Section IX. Biosolids Management

Table 9-1
Estimated Nitrogen Mineralization Rates for Biosolids ¹

	Application Year			
Biosolids Type	Application Year	1 Year After Application	2 Years After Application	3 Years After Application
Lime Stabilized	0.30	0.10	0.10	0.05
Aerobic Digestion	0.30	0.10	0.10	0.05
Anaerobic Digestion	0.30	0.10	0.10	0.05
Composted ²	0.10	0.05	0.03	0.00

- 1. To determine nitrogen available from previous Biosolids applications, multiply the percent organic nitrogen by the appropriate mineralization factor.
- 2. Total organic nitrogen content of 2% or less and no significant ammonia nitrogen.

Table 9-2 Biosolids Ammonium Nitrogen Availability Coefficients¹

Method of Application	Biosolids pH < 10	Biosolids pH > 10
Injection	1.00	1.00
Incorporated within 24 hours	0.85	0.75
Incorporated with 1-7 days	0.70	0.50
Incorporated after 7 days or no incorporation	0.50	0.25

1. To determine the plant-available Biosolids ammonium nitrogen in the soil, multiply the Biosolids ammonium nitrogen concentration or total weight applied by the appropriate availability coefficient.

Primary Nutrient Availability for Biosolids

Biosolids Phosphorus

Available P_2O_5 = Biosolids Analysis P_2O_5

If soils are testing M+ or above in phosphorus and the Biosolids will supply enough phosphorus for the crop according to the formula Available P_2O_5 = Total P_2O_5 , no fertilizer phosphorus should be used due to unlikely crop response and water quality concerns.

For soils testing Medium or below, starter applications of fertilizer phosphorus should be made even if the Biosolids contain sufficient phosphorus, since it is contained in slow release organic forms. For soils testing low, higher levels of phosphorus starter fertilizer are recommended.

Biosolids Potassium

Available K_2O = Biosolids analysis K_2O